Simple Llama 3.1 8B-Instruct model quantized using GPTQ v1 with C2/en 256 rows of calibration data
This is not a production ready quant model but one used to evaluate GPTQ v1 vs GPTQ v2 for post-quant comparison.
GPTQ v2 is hosted at: https://huggingface.co/ModelCloud/GPTQ-v2-Llama-3.1-8B-Instruct
Eval Script using GPTQModel (main branch) and Marlin kernel + lm-eval (main branch)
# eval
from lm_eval.tasks import TaskManager
from lm_eval.utils import make_table
with tempfile.TemporaryDirectory() as tmp_dir:
results = GPTQModel.eval(
QUANT_SAVE_PATH,
tasks=[EVAL.LM_EVAL.ARC_CHALLENGE, EVAL.LM_EVAL.GSM8K_PLATINUM_COT],
apply_chat_template=True,
random_seed=898,
output_path= tmp_dir,
)
print(make_table(results))
if "groups" in results:
print(make_table(results, "groups"))
Full quantization and eval reproduction code: https://github.com/ModelCloud/GPTQModel/issues/1545#issuecomment-2811997133
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
arc_challenge | 1 | none | 0 | acc | ↑ | 0.5000 | ± | 0.0146 |
none | 0 | acc_norm | ↑ | 0.5128 | ± | 0.0146 | ||
gsm8k_platinum_cot | 3 | flexible-extract | 8 | exact_match | ↑ | 0.3995 | ± | 0.0141 |
strict-match | 8 | exact_match | ↑ | 0.2548 | ± | 0.0125 |
- Downloads last month
- 63
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no library tag.
Model tree for ModelCloud/GPTQ-v1-Llama-3.1-8B-Instruct
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct