Simple Llama 3.1 8B-Instruct model quantized using GPTQ v1 with C2/en 256 rows of calibration data

This is not a production ready quant model but one used to evaluate GPTQ v1 vs GPTQ v2 for post-quant comparison.

GPTQ v2 is hosted at: https://huggingface.co/ModelCloud/GPTQ-v2-Llama-3.1-8B-Instruct

Eval Script using GPTQModel (main branch) and Marlin kernel + lm-eval (main branch)

# eval
from lm_eval.tasks import TaskManager
from lm_eval.utils import make_table

with tempfile.TemporaryDirectory() as tmp_dir:
    results = GPTQModel.eval(
        QUANT_SAVE_PATH,
        tasks=[EVAL.LM_EVAL.ARC_CHALLENGE, EVAL.LM_EVAL.GSM8K_PLATINUM_COT],
        apply_chat_template=True,
        random_seed=898,
        output_path= tmp_dir,
    )

    print(make_table(results))
    if "groups" in results:
        print(make_table(results, "groups"))

Full quantization and eval reproduction code: https://github.com/ModelCloud/GPTQModel/issues/1545#issuecomment-2811997133

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc ↑ 0.5000 ± 0.0146
none 0 acc_norm ↑ 0.5128 ± 0.0146
gsm8k_platinum_cot 3 flexible-extract 8 exact_match ↑ 0.3995 ± 0.0141
strict-match 8 exact_match ↑ 0.2548 ± 0.0125
Downloads last month
63
Safetensors
Model size
1.99B params
Tensor type
I32
·
BF16
·
FP16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ModelCloud/GPTQ-v1-Llama-3.1-8B-Instruct

Quantized
(396)
this model