Monday-Someday's picture
Model save
ba62e42 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-pt22k-ft22k-finetuned-ISIC-dec2024testepo7
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.944235770008668

beit-base-patch16-224-pt22k-ft22k-finetuned-ISIC-dec2024testepo7

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1532
  • Accuracy: 0.9442

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7021 0.9985 486 0.1905 0.9214
0.7584 1.9985 972 0.1713 0.9291
0.5877 2.9985 1458 0.1655 0.9333
0.6842 3.9985 1944 0.1591 0.9383
0.5674 4.9985 2430 0.1506 0.9406
0.5275 5.9985 2916 0.1450 0.9439
0.3942 6.9985 3402 0.1532 0.9442

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cpu
  • Datasets 3.2.0
  • Tokenizers 0.21.0