metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-pt22k-ft22k-finetuned-ISIC-dec2024testepo7
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.944235770008668
beit-base-patch16-224-pt22k-ft22k-finetuned-ISIC-dec2024testepo7
This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1532
- Accuracy: 0.9442
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7021 | 0.9985 | 486 | 0.1905 | 0.9214 |
0.7584 | 1.9985 | 972 | 0.1713 | 0.9291 |
0.5877 | 2.9985 | 1458 | 0.1655 | 0.9333 |
0.6842 | 3.9985 | 1944 | 0.1591 | 0.9383 |
0.5674 | 4.9985 | 2430 | 0.1506 | 0.9406 |
0.5275 | 5.9985 | 2916 | 0.1450 | 0.9439 |
0.3942 | 6.9985 | 3402 | 0.1532 | 0.9442 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cpu
- Datasets 3.2.0
- Tokenizers 0.21.0