Monday-Someday's picture
Model save
a4ccf22 verified
---
library_name: transformers
license: apache-2.0
base_model: google/efficientnet-b0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: efficientnet-b0-finetuned-ISIC-dec2024test
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9253106038717134
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# efficientnet-b0-finetuned-ISIC-dec2024test
This model is a fine-tuned version of [google/efficientnet-b0](https://huggingface.co/google/efficientnet-b0) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1830
- Accuracy: 0.9253
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.8804 | 0.9985 | 486 | 0.2063 | 0.9152 |
| 0.8847 | 1.9985 | 972 | 0.1892 | 0.9208 |
| 0.7874 | 2.9985 | 1458 | 0.1859 | 0.9214 |
| 0.7643 | 3.9985 | 1944 | 0.1828 | 0.9250 |
| 0.823 | 4.9985 | 2430 | 0.1830 | 0.9253 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cpu
- Datasets 3.2.0
- Tokenizers 0.21.0