lora-vit5-finetuned
This model is a fine-tuned version of VietAI/vit5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0290
- Rouge1 F1: 0.1812
- Rouge2 F1: 0.1462
- Rougel F1: 0.1688
- Bleu: 0.0
Model description
The model is trained based on vit5-base, trained to summarize Vietnamese articles
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 F1 | Rouge2 F1 | Rougel F1 | Bleu |
---|---|---|---|---|---|---|---|
0.4567 | 1.0 | 1250 | 0.0438 | 0.1776 | 0.1374 | 0.1634 | 0.0 |
0.0523 | 2.0 | 2500 | 0.0347 | 0.1798 | 0.1415 | 0.1659 | 0.0 |
0.0438 | 3.0 | 3750 | 0.0313 | 0.1806 | 0.1448 | 0.1679 | 0.0 |
0.0393 | 4.0 | 5000 | 0.0295 | 0.1812 | 0.1452 | 0.1682 | 0.0 |
0.0371 | 5.0 | 6250 | 0.0290 | 0.1812 | 0.1462 | 0.1688 | 0.0 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Monkey28/lora-vit5-finetuned
Base model
VietAI/vit5-base