from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer


quant_path = "Moses25/Mistral-7B-Instruct-32K-AWQ"

# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

chat = [
    {"role": "system", "content": "You are a concise assistant that helps answer questions."},
    {"role": "user", "content": prompt},
]

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("</s>")
]

tokens = tokenizer.apply_chat_template(
    chat,
    return_tensors="pt"
).cuda()

# Generate output
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=2048,
    eos_token_id=terminators
)
Downloads last month
8
Safetensors
Model size
1.2B params
Tensor type
I32
ยท
FP16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Space using Moses25/Mistral-7B-Instruct-32K-AWQ 1

Collection including Moses25/Mistral-7B-Instruct-32K-AWQ