Qwen3-Reranker-0.6B GGUF Models

Model Generation Details

This model was generated using llama.cpp at commit d17a809e.

Choosing the Right Model Format

Selecting the correct model format depends on your hardware capabilities and memory constraints.

BF16 (Brain Float 16) – Use if BF16 acceleration is available

  • A 16-bit floating-point format designed for faster computation while retaining good precision.
  • Provides similar dynamic range as FP32 but with lower memory usage.
  • Recommended if your hardware supports BF16 acceleration (check your device's specs).
  • Ideal for high-performance inference with reduced memory footprint compared to FP32.

πŸ“Œ Use BF16 if:
βœ” Your hardware has native BF16 support (e.g., newer GPUs, TPUs).
βœ” You want higher precision while saving memory.
βœ” You plan to requantize the model into another format.

πŸ“Œ Avoid BF16 if:
❌ Your hardware does not support BF16 (it may fall back to FP32 and run slower).
❌ You need compatibility with older devices that lack BF16 optimization.


F16 (Float 16) – More widely supported than BF16

  • A 16-bit floating-point high precision but with less of range of values than BF16.
  • Works on most devices with FP16 acceleration support (including many GPUs and some CPUs).
  • Slightly lower numerical precision than BF16 but generally sufficient for inference.

πŸ“Œ Use F16 if:
βœ” Your hardware supports FP16 but not BF16.
βœ” You need a balance between speed, memory usage, and accuracy.
βœ” You are running on a GPU or another device optimized for FP16 computations.

πŸ“Œ Avoid F16 if:
❌ Your device lacks native FP16 support (it may run slower than expected).
❌ You have memory limitations.


Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference

Quantization reduces model size and memory usage while maintaining as much accuracy as possible.

  • Lower-bit models (Q4_K) β†’ Best for minimal memory usage, may have lower precision.
  • Higher-bit models (Q6_K, Q8_0) β†’ Better accuracy, requires more memory.

πŸ“Œ Use Quantized Models if:
βœ” You are running inference on a CPU and need an optimized model.
βœ” Your device has low VRAM and cannot load full-precision models.
βœ” You want to reduce memory footprint while keeping reasonable accuracy.

πŸ“Œ Avoid Quantized Models if:
❌ You need maximum accuracy (full-precision models are better for this).
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).


Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)

These models are optimized for extreme memory efficiency, making them ideal for low-power devices or large-scale deployments where memory is a critical constraint.

  • IQ3_XS: Ultra-low-bit quantization (3-bit) with extreme memory efficiency.

    • Use case: Best for ultra-low-memory devices where even Q4_K is too large.
    • Trade-off: Lower accuracy compared to higher-bit quantizations.
  • IQ3_S: Small block size for maximum memory efficiency.

    • Use case: Best for low-memory devices where IQ3_XS is too aggressive.
  • IQ3_M: Medium block size for better accuracy than IQ3_S.

    • Use case: Suitable for low-memory devices where IQ3_S is too limiting.
  • Q4_K: 4-bit quantization with block-wise optimization for better accuracy.

    • Use case: Best for low-memory devices where Q6_K is too large.
  • Q4_0: Pure 4-bit quantization, optimized for ARM devices.

    • Use case: Best for ARM-based devices or low-memory environments.

Summary Table: Model Format Selection

Model Format Precision Memory Usage Device Requirements Best Use Case
BF16 Highest High BF16-supported GPU/CPUs High-speed inference with reduced memory
F16 High High FP16-supported devices GPU inference when BF16 isn't available
Q4_K Medium Low Low CPU or Low-VRAM devices Best for memory-constrained environments
Q6_K Medium Moderate CPU with more memory Better accuracy while still being quantized
Q8_0 High Moderate CPU or GPU with enough VRAM Best accuracy among quantized models
IQ3_XS Very Low Very Low Ultra-low-memory devices Extreme memory efficiency and low accuracy
Q4_0 Low Low ARM or low-memory devices llama.cpp can optimize for ARM devices

πŸš€ If you find these models useful

❀ Please click "Like" if you find this useful!
Help me test my AI-Powered Network Monitor Assistant with quantum-ready security checks:
πŸ‘‰ Quantum Network Monitor

πŸ’¬ How to test:
Choose an AI assistant type:

  • TurboLLM (GPT-4o-mini)
  • HugLLM (Hugginface Open-source)
  • TestLLM (Experimental CPU-only)

What I’m Testing

I’m pushing the limits of small open-source models for AI network monitoring, specifically:

  • Function calling against live network services
  • How small can a model go while still handling:
    • Automated Nmap scans
    • Quantum-readiness checks
    • Network Monitoring tasks

🟑 TestLLM – Current experimental model (llama.cpp on 2 CPU threads):

  • βœ… Zero-configuration setup
  • ⏳ 30s load time (slow inference but no API costs)
  • πŸ”§ Help wanted! If you’re into edge-device AI, let’s collaborate!

Other Assistants

🟒 TurboLLM – Uses gpt-4o-mini for:

  • Create custom cmd processors to run .net code on Quantum Network Monitor Agents
  • Real-time network diagnostics and monitoring
  • Security Audits
  • Penetration testing (Nmap/Metasploit)

πŸ”΅ HugLLM – Latest Open-source models:

  • 🌐 Runs on Hugging Face Inference API

πŸ’‘ Example commands to you could test:

  1. "Give me info on my websites SSL certificate"
  2. "Check if my server is using quantum safe encyption for communication"
  3. "Run a comprehensive security audit on my server"
  4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!

Final Word

I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAIβ€”all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is open source. Feel free to use whatever you find helpful.

If you appreciate the work, please consider buying me a coffee β˜•. Your support helps cover service costs and allows me to raise token limits for everyone.

I'm also open to job opportunities or sponsorship.

Thank you! 😊

Qwen3-Reranker-0.6B

Highlights

The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining.

Exceptional Versatility: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks No.1 in the MTEB multilingual leaderboard (as of June 5, 2025, score 70.58), while the reranking model excels in various text retrieval scenarios.

Comprehensive Flexibility: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios.

Multilingual Capability: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities.

Model Overview

Qwen3-Reranker-0.6B has the following features:

  • Model Type: Text Reranking
  • Supported Languages: 100+ Languages
  • Number of Paramaters: 0.6B
  • Context Length: 32k

For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our blog, GitHub.

Qwen3 Embedding Series Model list

Model Type Models Size Layers Sequence Length Embedding Dimension MRL Support Instruction Aware
Text Embedding Qwen3-Embedding-0.6B 0.6B 28 32K 1024 Yes Yes
Text Embedding Qwen3-Embedding-4B 4B 36 32K 2560 Yes Yes
Text Embedding Qwen3-Embedding-8B 8B 36 32K 4096 Yes Yes
Text Reranking Qwen3-Reranker-0.6B 0.6B 28 32K - - Yes
Text Reranking Qwen3-Reranker-4B 4B 36 32K - - Yes
Text Reranking Qwen3-Reranker-8B 8B 36 32K - - Yes

Note:

  • MRL Support indicates whether the embedding model supports custom dimensions for the final embedding.
  • Instruction Aware notes whether the embedding or reranking model supports customizing the input instruction according to different tasks.
  • Our evaluation indicates that, for most downstream tasks, using instructions (instruct) typically yields an improvement of 1% to 5% compared to not using them. Therefore, we recommend that developers create tailored instructions specific to their tasks and scenarios. In multilingual contexts, we also advise users to write their instructions in English, as most instructions utilized during the model training process were originally written in English.

Usage

With Transformers versions earlier than 4.51.0, you may encounter the following error:

KeyError: 'qwen3'

Transformers Usage

# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM

def format_instruction(instruction, query, doc):
    if instruction is None:
        instruction = 'Given a web search query, retrieve relevant passages that answer the query'
    output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
    return output

def process_inputs(pairs):
    inputs = tokenizer(
        pairs, padding=False, truncation='longest_first',
        return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
    )
    for i, ele in enumerate(inputs['input_ids']):
        inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
    inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
    for key in inputs:
        inputs[key] = inputs[key].to(model.device)
    return inputs

@torch.no_grad()
def compute_logits(inputs, **kwargs):
    batch_scores = model(**inputs).logits[:, -1, :]
    true_vector = batch_scores[:, token_true_id]
    false_vector = batch_scores[:, token_false_id]
    batch_scores = torch.stack([false_vector, true_vector], dim=1)
    batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
    scores = batch_scores[:, 1].exp().tolist()
    return scores

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-0.6B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-0.6B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-0.6B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192

prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
        
task = 'Given a web search query, retrieve relevant passages that answer the query'

queries = ["What is the capital of China?",
    "Explain gravity",
]

documents = [
    "The capital of China is Beijing.",
    "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]

pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]

# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)

print("scores: ", scores)

vLLM Usage

# Requires vllm>=0.8.5
import logging
from typing import Dict, Optional, List

import json
import logging

import torch

from transformers import AutoTokenizer, is_torch_npu_available
from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import destroy_model_parallel
import gc
import math
from vllm.inputs.data import TokensPrompt


        
def format_instruction(instruction, query, doc):
    text = [
        {"role": "system", "content": "Judge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\"."},
        {"role": "user", "content": f"<Instruct>: {instruction}\n\n<Query>: {query}\n\n<Document>: {doc}"}
    ]
    return text

def process_inputs(pairs, instruction, max_length, suffix_tokens):
    messages = [format_instruction(instruction, query, doc) for query, doc in pairs]
    messages =  tokenizer.apply_chat_template(
        messages, tokenize=True, add_generation_prompt=False, enable_thinking=False
    )
    messages = [ele[:max_length] + suffix_tokens for ele in messages]
    messages = [TokensPrompt(prompt_token_ids=ele) for ele in messages]
    return messages

def compute_logits(model, messages, sampling_params, true_token, false_token):
    outputs = model.generate(messages, sampling_params, use_tqdm=False)
    scores = []
    for i in range(len(outputs)):
        final_logits = outputs[i].outputs[0].logprobs[-1]
        token_count = len(outputs[i].outputs[0].token_ids)
        if true_token not in final_logits:
            true_logit = -10
        else:
            true_logit = final_logits[true_token].logprob
        if false_token not in final_logits:
            false_logit = -10
        else:
            false_logit = final_logits[false_token].logprob
        true_score = math.exp(true_logit)
        false_score = math.exp(false_logit)
        score = true_score / (true_score + false_score)
        scores.append(score)
    return scores

number_of_gpu = torch.cuda.device_count()
tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen3-Reranker-0.6B')
model = LLM(model='Qwen/Qwen3-Reranker-0.6B', tensor_parallel_size=number_of_gpu, max_model_len=10000, enable_prefix_caching=True, gpu_memory_utilization=0.8)
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
max_length=8192
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
true_token = tokenizer("yes", add_special_tokens=False).input_ids[0]
false_token = tokenizer("no", add_special_tokens=False).input_ids[0]
sampling_params = SamplingParams(temperature=0, 
    max_tokens=1,
    logprobs=20, 
    allowed_token_ids=[true_token, false_token],
)

        
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
    "Explain gravity",
]
documents = [
    "The capital of China is Beijing.",
    "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]

pairs = list(zip(queries, documents))
inputs = process_inputs(pairs, task, max_length-len(suffix_tokens), suffix_tokens)
scores = compute_logits(model, inputs, sampling_params, true_token, false_token)
print('scores', scores)

destroy_model_parallel()

πŸ“Œ Tip: We recommend that developers customize the instruct according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using an instruct on the query side can lead to a drop in retrieval performance by approximately 1% to 5%.

Evaluation

Model Param MTEB-R CMTEB-R MMTEB-R MLDR MTEB-Code FollowIR
Qwen3-Embedding-0.6B 0.6B 61.82 71.02 64.64 50.26 75.41 5.09
Jina-multilingual-reranker-v2-base 0.3B 58.22 63.37 63.73 39.66 58.98 -0.68
gte-multilingual-reranker-base 0.3B 59.51 74.08 59.44 66.33 54.18 -1.64
BGE-reranker-v2-m3 0.6B 57.03 72.16 58.36 59.51 41.38 -0.01
Qwen3-Reranker-0.6B 0.6B 65.80 71.31 66.36 67.28 73.42 5.41
Qwen3-Reranker-4B 1.7B 69.76 75.94 72.74 69.97 81.20 14.84
Qwen3-Reranker-8B 8B 69.02 77.45 72.94 70.19 81.22 8.05

Note:

  • Evaluation results for reranking models. We use the retrieval subsets of MTEB(eng, v2), MTEB(cmn, v1), MMTEB and MTEB (Code), which are MTEB-R, CMTEB-R, MMTEB-R and MTEB-Code.
  • All scores are our runs based on the top-100 candidates retrieved by dense embedding model Qwen3-Embedding-0.6B.

Citation

If you find our work helpful, feel free to give us a cite.

@misc{qwen3-embedding,
    title  = {Qwen3-Embedding},
    url    = {https://qwenlm.github.io/blog/qwen3/},
    author = {Qwen Team},
    month  = {May},
    year   = {2025}
}
Downloads last month
1,527
GGUF
Model size
596M params
Architecture
qwen3
Hardware compatibility
Log In to view the estimation

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Mungert/Qwen3-Reranker-0.6B-GGUF

Quantized
(37)
this model