nli_classifier
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3715
- F1 Macro: 0.8526
- F1 Micro: 0.8656
- Accuracy Balanced: 0.8527
- Accuracy: 0.8656
- Precision Macro: 0.8526
- Recall Macro: 0.8527
- Precision Micro: 0.8656
- Recall Micro: 0.8656
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.2235 | 1.0 | 9145 | 0.3456 | 0.8493 | 0.8627 | 0.8488 | 0.8627 | 0.8497 | 0.8488 | 0.8627 | 0.8627 |
0.1575 | 1.9998 | 18288 | 0.3715 | 0.8526 | 0.8656 | 0.8527 | 0.8656 | 0.8526 | 0.8527 | 0.8656 | 0.8656 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for N1CKNGUYEN/NLI_UniversalClassifier_beta
Base model
microsoft/deberta-v3-base