nli_classifier

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3715
  • F1 Macro: 0.8526
  • F1 Micro: 0.8656
  • Accuracy Balanced: 0.8527
  • Accuracy: 0.8656
  • Precision Macro: 0.8526
  • Recall Macro: 0.8527
  • Precision Micro: 0.8656
  • Recall Micro: 0.8656

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.2235 1.0 9145 0.3456 0.8493 0.8627 0.8488 0.8627 0.8497 0.8488 0.8627 0.8627
0.1575 1.9998 18288 0.3715 0.8526 0.8656 0.8527 0.8656 0.8526 0.8527 0.8656 0.8656

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
-
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for N1CKNGUYEN/NLI_UniversalClassifier_beta

Finetuned
(443)
this model