AraModernBERT Models
Collection
AraModernBert is an advanced Arabic language model built on the ModernBERT architecture.
•
2 items
•
Updated
•
3
This SentenceTransformer is fine-tuned from NAMAA-Space/AraModernBert-Base-V1.0, bringing strong arabic embeddings useful for a multiple of use cases.
🔹 768-dimensional dense vectors 🎯
🔹 Excels in: Semantic Similarity, Search, Paraphrase Mining, Clustering, Text Classification & More!
🔹 Optimized for speed & efficiency without sacrificing performance
Whether you're building intelligent search engines, chatbots, or AI-powered knowledge graphs, this model delivers meaningful representations of Arabic text with precision and depth.
Try it out & bring Arabic NLP to the next level! 🔥✨
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NAMAA-Space/AraModernBert-Base-STS")
# Run inference
sentences = [
'الذكاء الاصطناعي يغير طريقة تفاعلنا مع التكنولوجيا.',
'التكنولوجيا تتطور بسرعة بفضل الذكاء الاصطناعي.',
'الذكاء الاصطناعي يسهم في تطوير التطبيقات الذكية.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
STS17
and STS22.v2
EmbeddingSimilarityEvaluator
Metric | STS17 | STS22.v2 |
---|---|---|
pearson_cosine | 0.8249 | 0.5259 |
spearman_cosine | 0.831 | 0.6169 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
NAMAA-Space/AraModernBert-Base-V1.0