NICOPOI-9's picture
End of training
d5b97f8 verified
metadata
library_name: transformers
license: other
base_model: nvidia/mit-b3
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-morphpadver1-hgo-coord-v3_1
    results: []

segformer-b0-finetuned-morphpadver1-hgo-coord-v3_1

This model is a fine-tuned version of nvidia/mit-b3 on the NICOPOI-9/morphpad_coord_hgo_512_4class_v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0117
  • Mean Iou: 0.9981
  • Mean Accuracy: 0.9990
  • Overall Accuracy: 0.9990
  • Accuracy 0-0: 0.9995
  • Accuracy 0-90: 0.9985
  • Accuracy 90-0: 0.9988
  • Accuracy 90-90: 0.9993
  • Iou 0-0: 0.9991
  • Iou 0-90: 0.9979
  • Iou 90-0: 0.9976
  • Iou 90-90: 0.9978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy 0-0 Accuracy 0-90 Accuracy 90-0 Accuracy 90-90 Iou 0-0 Iou 0-90 Iou 90-0 Iou 90-90
0.903 2.6525 4000 0.8952 0.3916 0.5570 0.5567 0.5335 0.6125 0.4890 0.5929 0.4534 0.3418 0.3411 0.4299
0.6373 5.3050 8000 0.5078 0.6237 0.7643 0.7643 0.7676 0.8339 0.6741 0.7817 0.6758 0.5472 0.6022 0.6698
0.2851 7.9576 12000 0.2955 0.7612 0.8642 0.8642 0.8669 0.8687 0.8339 0.8874 0.7959 0.7358 0.7500 0.7631
0.2309 10.6101 16000 0.1305 0.9184 0.9574 0.9574 0.9575 0.9381 0.9648 0.9692 0.9333 0.9074 0.8991 0.9337
0.0907 13.2626 20000 0.1249 0.9267 0.9620 0.9620 0.9636 0.9541 0.9594 0.9708 0.9379 0.9205 0.9169 0.9316
0.3051 15.9151 24000 0.0529 0.9675 0.9835 0.9835 0.9842 0.9805 0.9839 0.9854 0.9712 0.9636 0.9626 0.9728
0.0659 18.5676 28000 0.0630 0.9670 0.9832 0.9833 0.9852 0.9747 0.9885 0.9846 0.9719 0.9642 0.9633 0.9687
0.0474 21.2202 32000 0.0454 0.9768 0.9882 0.9883 0.9910 0.9856 0.9865 0.9899 0.9783 0.9737 0.9747 0.9805
0.0449 23.8727 36000 0.0468 0.9795 0.9896 0.9896 0.9900 0.9812 0.9900 0.9973 0.9828 0.9743 0.9783 0.9824
0.0552 26.5252 40000 0.0266 0.9884 0.9942 0.9942 0.9949 0.9917 0.9947 0.9953 0.9888 0.9865 0.9866 0.9916
0.0541 29.1777 44000 0.0290 0.9908 0.9954 0.9954 0.9951 0.9951 0.9967 0.9946 0.9921 0.9897 0.9905 0.9909
0.0082 31.8302 48000 0.0421 0.9891 0.9945 0.9945 0.9940 0.9924 0.9951 0.9966 0.9908 0.9869 0.9884 0.9904
0.0061 34.4828 52000 0.0345 0.9923 0.9961 0.9961 0.9971 0.9941 0.9966 0.9966 0.9939 0.9912 0.9916 0.9922
0.0053 37.1353 56000 0.0256 0.9941 0.9970 0.9970 0.9976 0.9972 0.9966 0.9968 0.9957 0.9928 0.9929 0.9949
0.0045 39.7878 60000 0.0256 0.9937 0.9968 0.9968 0.9978 0.9959 0.9959 0.9978 0.9937 0.9927 0.9926 0.9957
0.0046 42.4403 64000 0.0171 0.9964 0.9982 0.9982 0.9983 0.9976 0.9987 0.9981 0.9972 0.9958 0.9955 0.9969
0.0032 45.0928 68000 0.0293 0.9957 0.9979 0.9979 0.9983 0.9969 0.9975 0.9988 0.9966 0.9950 0.9950 0.9964
0.003 47.7454 72000 0.0251 0.9964 0.9982 0.9982 0.9984 0.9973 0.9984 0.9987 0.9973 0.9952 0.9965 0.9966
0.0035 50.3979 76000 0.0245 0.9973 0.9986 0.9986 0.9993 0.9982 0.9983 0.9987 0.9982 0.9969 0.9963 0.9977
0.0025 53.0504 80000 0.0222 0.9972 0.9986 0.9986 0.9990 0.9980 0.9987 0.9986 0.9985 0.9965 0.9970 0.9968
0.0023 55.7029 84000 0.0104 0.9982 0.9991 0.9991 0.9994 0.9989 0.9987 0.9993 0.9988 0.9980 0.9975 0.9983
0.0022 58.3554 88000 0.0117 0.9981 0.9990 0.9990 0.9995 0.9985 0.9988 0.9993 0.9991 0.9979 0.9976 0.9978

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0