segformer-b4-finetuned-morphpadver1-hgo-coord-v5
This model is a fine-tuned version of nvidia/mit-b4 on the NICOPOI-9/morphpad_coord_hgo_512_4class_v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0305
- Mean Iou: 0.9957
- Mean Accuracy: 0.9978
- Overall Accuracy: 0.9978
- Accuracy 0-0: 0.9985
- Accuracy 0-90: 0.9967
- Accuracy 90-0: 0.9974
- Accuracy 90-90: 0.9988
- Iou 0-0: 0.9963
- Iou 0-90: 0.9949
- Iou 90-0: 0.9946
- Iou 90-90: 0.9970
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1205 | 2.6525 | 4000 | 1.0224 | 0.3348 | 0.5016 | 0.5008 | 0.3938 | 0.4555 | 0.5489 | 0.6084 | 0.3529 | 0.3168 | 0.3227 | 0.3469 |
0.7254 | 5.3050 | 8000 | 0.6015 | 0.5633 | 0.7192 | 0.7188 | 0.6706 | 0.7324 | 0.7551 | 0.7186 | 0.6037 | 0.5466 | 0.5314 | 0.5714 |
0.3698 | 7.9576 | 12000 | 0.3707 | 0.7204 | 0.8368 | 0.8369 | 0.8560 | 0.8606 | 0.8261 | 0.8044 | 0.7447 | 0.6982 | 0.6938 | 0.7450 |
0.2039 | 10.6101 | 16000 | 0.2198 | 0.8391 | 0.9123 | 0.9123 | 0.9102 | 0.9321 | 0.9138 | 0.8931 | 0.8560 | 0.8255 | 0.8231 | 0.8516 |
0.0791 | 13.2626 | 20000 | 0.1565 | 0.9056 | 0.9504 | 0.9504 | 0.9499 | 0.9421 | 0.9554 | 0.9542 | 0.9165 | 0.8932 | 0.8953 | 0.9172 |
0.0587 | 15.9151 | 24000 | 0.1037 | 0.9456 | 0.9721 | 0.9721 | 0.9732 | 0.9693 | 0.9708 | 0.9749 | 0.9512 | 0.9402 | 0.9402 | 0.9509 |
0.0739 | 18.5676 | 28000 | 0.0545 | 0.9677 | 0.9836 | 0.9836 | 0.9836 | 0.9762 | 0.9869 | 0.9876 | 0.9728 | 0.9635 | 0.9640 | 0.9704 |
0.0443 | 21.2202 | 32000 | 0.0565 | 0.9716 | 0.9856 | 0.9856 | 0.9887 | 0.9885 | 0.9817 | 0.9835 | 0.9767 | 0.9675 | 0.9687 | 0.9735 |
0.1436 | 23.8727 | 36000 | 0.0484 | 0.9763 | 0.9880 | 0.9880 | 0.9898 | 0.9858 | 0.9876 | 0.9889 | 0.9808 | 0.9734 | 0.9730 | 0.9782 |
0.0681 | 26.5252 | 40000 | 0.0467 | 0.9831 | 0.9915 | 0.9915 | 0.9915 | 0.9904 | 0.9912 | 0.9929 | 0.9861 | 0.9821 | 0.9790 | 0.9852 |
0.0138 | 29.1777 | 44000 | 0.0357 | 0.9868 | 0.9934 | 0.9934 | 0.9930 | 0.9927 | 0.9932 | 0.9946 | 0.9879 | 0.9856 | 0.9842 | 0.9897 |
0.0292 | 31.8302 | 48000 | 0.0295 | 0.9898 | 0.9949 | 0.9949 | 0.9957 | 0.9942 | 0.9949 | 0.9947 | 0.9899 | 0.9894 | 0.9879 | 0.9923 |
0.0081 | 34.4828 | 52000 | 0.0262 | 0.9915 | 0.9957 | 0.9957 | 0.9958 | 0.9951 | 0.9958 | 0.9962 | 0.9912 | 0.9910 | 0.9901 | 0.9937 |
0.0061 | 37.1353 | 56000 | 0.0388 | 0.9905 | 0.9952 | 0.9952 | 0.9949 | 0.9939 | 0.9952 | 0.9969 | 0.9909 | 0.9900 | 0.9874 | 0.9936 |
0.006 | 39.7878 | 60000 | 0.0415 | 0.9929 | 0.9964 | 0.9964 | 0.9949 | 0.9963 | 0.9964 | 0.9982 | 0.9926 | 0.9927 | 0.9907 | 0.9955 |
0.0056 | 42.4403 | 64000 | 0.0301 | 0.9943 | 0.9972 | 0.9972 | 0.9975 | 0.9971 | 0.9966 | 0.9974 | 0.9961 | 0.9927 | 0.9931 | 0.9954 |
0.005 | 45.0928 | 68000 | 0.0213 | 0.9957 | 0.9978 | 0.9978 | 0.9982 | 0.9979 | 0.9976 | 0.9978 | 0.9968 | 0.9948 | 0.9946 | 0.9967 |
0.0041 | 47.7454 | 72000 | 0.0305 | 0.9957 | 0.9978 | 0.9978 | 0.9985 | 0.9967 | 0.9974 | 0.9988 | 0.9963 | 0.9949 | 0.9946 | 0.9970 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for NICOPOI-9/segformer-b4-finetuned-morphpadver1-hgo-coord-v5
Base model
nvidia/mit-b4