segformer-b5-finetuned-ade20k-hgo-coord_40epochs_distortion_ver2_global_norm_with_void_3

This model is a fine-tuned version of NICOPOI-9/segformer-b5-finetuned-ade20k-hgo-coord_40epochs_distortion_ver2_global_norm_with_void on the NICOPOI-9/Modphad_Perlin_two_void_coord_global_norm dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5837
  • Mean Iou: 0.7559
  • Mean Accuracy: 0.8600
  • Overall Accuracy: 0.8723
  • Accuracy [0,0]: 0.8245
  • Accuracy [0,1]: 0.8968
  • Accuracy [1,0]: 0.9052
  • Accuracy [1,1]: 0.8873
  • Accuracy [0,2]: 0.8720
  • Accuracy [0,3]: 0.8555
  • Accuracy [1,2]: 0.8630
  • Accuracy [1,3]: 0.9183
  • Accuracy [2,0]: 0.8100
  • Accuracy [2,1]: 0.8301
  • Accuracy [2,2]: 0.8209
  • Accuracy [2,3]: 0.8314
  • Accuracy [3,0]: 0.8513
  • Accuracy [3,1]: 0.7988
  • Accuracy [3,2]: 0.8444
  • Accuracy [3,3]: 0.8538
  • Accuracy Void: 0.9565
  • Iou [0,0]: 0.7600
  • Iou [0,1]: 0.7777
  • Iou [1,0]: 0.7713
  • Iou [1,1]: 0.7672
  • Iou [0,2]: 0.7510
  • Iou [0,3]: 0.7562
  • Iou [1,2]: 0.7433
  • Iou [1,3]: 0.8024
  • Iou [2,0]: 0.7175
  • Iou [2,1]: 0.7317
  • Iou [2,2]: 0.6962
  • Iou [2,3]: 0.7339
  • Iou [3,0]: 0.7656
  • Iou [3,1]: 0.7285
  • Iou [3,2]: 0.7081
  • Iou [3,3]: 0.7214
  • Iou Void: 0.9178

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy [0,0] Accuracy [0,1] Accuracy [1,0] Accuracy [1,1] Accuracy [0,2] Accuracy [0,3] Accuracy [1,2] Accuracy [1,3] Accuracy [2,0] Accuracy [2,1] Accuracy [2,2] Accuracy [2,3] Accuracy [3,0] Accuracy [3,1] Accuracy [3,2] Accuracy [3,3] Accuracy Void Iou [0,0] Iou [0,1] Iou [1,0] Iou [1,1] Iou [0,2] Iou [0,3] Iou [1,2] Iou [1,3] Iou [2,0] Iou [2,1] Iou [2,2] Iou [2,3] Iou [3,0] Iou [3,1] Iou [3,2] Iou [3,3] Iou Void
0.152 7.3260 4000 0.7633 0.6318 0.7756 0.7910 0.7271 0.7253 0.8081 0.8546 0.8294 0.7726 0.7022 0.8399 0.6781 0.7753 0.7977 0.7897 0.8184 0.5306 0.7908 0.8273 0.9181 0.6549 0.6477 0.6603 0.6563 0.6384 0.6154 0.6197 0.6871 0.5669 0.6722 0.5917 0.6063 0.6417 0.4889 0.5758 0.5383 0.8792
0.4745 14.6520 8000 0.6847 0.6572 0.7918 0.8081 0.7585 0.7823 0.8711 0.8361 0.8139 0.7747 0.6589 0.8644 0.7717 0.8130 0.7244 0.7572 0.8354 0.6652 0.7897 0.8170 0.9266 0.6768 0.6619 0.6854 0.6303 0.6853 0.6383 0.6093 0.6536 0.6602 0.5989 0.6355 0.6343 0.6964 0.6043 0.6389 0.5706 0.8930
0.2779 21.9780 12000 0.6080 0.6946 0.8203 0.8326 0.7822 0.8660 0.8674 0.8758 0.8260 0.8204 0.8000 0.8680 0.7232 0.7985 0.8629 0.7841 0.8052 0.7116 0.8226 0.8120 0.9190 0.7199 0.7346 0.7254 0.6937 0.6854 0.6604 0.6958 0.7238 0.6568 0.6896 0.6128 0.6912 0.7207 0.6371 0.6627 0.6076 0.8904
0.0837 29.3040 16000 0.5950 0.7067 0.8279 0.8404 0.7697 0.8721 0.8696 0.8884 0.8008 0.8170 0.7844 0.8911 0.8288 0.7954 0.7810 0.7962 0.8401 0.7972 0.7915 0.8268 0.9235 0.6886 0.7537 0.6917 0.7075 0.7107 0.6793 0.6946 0.7357 0.7132 0.6818 0.6766 0.7030 0.6825 0.6735 0.6497 0.6747 0.8970
0.1192 36.6300 20000 0.6074 0.7169 0.8348 0.8475 0.8083 0.8478 0.8681 0.8823 0.8403 0.8282 0.8310 0.9117 0.7915 0.8006 0.7987 0.7866 0.8475 0.7392 0.8417 0.8336 0.9345 0.7405 0.7410 0.7164 0.7271 0.7169 0.6911 0.7208 0.7466 0.6942 0.7163 0.6798 0.6821 0.7093 0.6520 0.6803 0.6701 0.9026
0.0538 43.9560 24000 0.6011 0.7190 0.8335 0.8496 0.8453 0.8891 0.8780 0.8929 0.8250 0.7916 0.7874 0.8868 0.8056 0.8231 0.7849 0.7742 0.8565 0.7412 0.7993 0.8380 0.9511 0.7570 0.6969 0.7359 0.7488 0.7296 0.6807 0.6977 0.7651 0.7055 0.6898 0.6898 0.6849 0.7412 0.6480 0.6828 0.6554 0.9143
0.0616 51.2821 28000 0.5992 0.7349 0.8451 0.8586 0.8345 0.9088 0.8899 0.8821 0.8455 0.8010 0.8537 0.8853 0.7653 0.8475 0.8179 0.8252 0.8186 0.7725 0.8359 0.8324 0.9512 0.7540 0.7328 0.7120 0.7596 0.7493 0.7131 0.7134 0.7649 0.6818 0.7506 0.7135 0.7105 0.7632 0.7053 0.6837 0.6767 0.9098
0.0471 58.6081 32000 0.5636 0.7472 0.8530 0.8671 0.8347 0.8966 0.9209 0.8917 0.8560 0.8639 0.8388 0.9071 0.7870 0.8462 0.8135 0.8072 0.8454 0.7765 0.8370 0.8212 0.9580 0.7641 0.7822 0.7606 0.7573 0.7466 0.7331 0.7421 0.7789 0.6958 0.7347 0.6971 0.7076 0.7581 0.7122 0.7289 0.6887 0.9149
0.101 65.9341 36000 0.5694 0.7514 0.8573 0.8696 0.8289 0.8963 0.8971 0.8826 0.8476 0.8269 0.8581 0.9075 0.8128 0.8565 0.8462 0.8263 0.8474 0.8111 0.8374 0.8324 0.9600 0.7687 0.7604 0.7533 0.7885 0.7427 0.7313 0.7500 0.7977 0.7090 0.7323 0.6802 0.7167 0.7713 0.7278 0.7082 0.7185 0.9169
0.0344 73.2601 40000 0.5837 0.7559 0.8600 0.8723 0.8245 0.8968 0.9052 0.8873 0.8720 0.8555 0.8630 0.9183 0.8100 0.8301 0.8209 0.8314 0.8513 0.7988 0.8444 0.8538 0.9565 0.7600 0.7777 0.7713 0.7672 0.7510 0.7562 0.7433 0.8024 0.7175 0.7317 0.6962 0.7339 0.7656 0.7285 0.7081 0.7214 0.9178

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
31
Safetensors
Model size
84.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for NICOPOI-9/segformer-b5-finetuned-ade20k-hgo-coord_40epochs_distortion_ver2_global_norm_with_void_3