segformer-b5-finetuned-ade20k-morphpadver1-hgo-coord-_40epochs_distortion_30_30_global_norm
This model is a fine-tuned version of NICOPOI-9/segformer-b5-finetuned-ade20k-morphpadver1-hgo-coord_40epochs_distortion_global_norm on the NICOPOI-9/Morphpad_HGO_1000_30_30_coord_global_norm dataset. It achieves the following results on the evaluation set:
- Loss: 0.3022
- Mean Iou: 0.8265
- Mean Accuracy: 0.9052
- Overall Accuracy: 0.9052
- Accuracy 0-0: 0.9412
- Accuracy 0-90: 0.8587
- Accuracy 90-0: 0.8790
- Accuracy 90-90: 0.9419
- Iou 0-0: 0.8523
- Iou 0-90: 0.7989
- Iou 90-0: 0.8052
- Iou 90-90: 0.8497
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3648 | 4.2105 | 4000 | 0.6460 | 0.6389 | 0.7795 | 0.7795 | 0.8410 | 0.7043 | 0.7272 | 0.8455 | 0.6851 | 0.5820 | 0.5850 | 0.7036 |
1.3689 | 8.4211 | 8000 | 0.5698 | 0.7166 | 0.8342 | 0.8341 | 0.8712 | 0.7811 | 0.8184 | 0.8660 | 0.7602 | 0.6620 | 0.6760 | 0.7683 |
0.2883 | 12.6316 | 12000 | 0.3956 | 0.7572 | 0.8614 | 0.8614 | 0.8961 | 0.8453 | 0.8126 | 0.8916 | 0.7990 | 0.7202 | 0.7123 | 0.7972 |
0.2494 | 16.8421 | 16000 | 0.3556 | 0.7756 | 0.8736 | 0.8737 | 0.9125 | 0.8340 | 0.8208 | 0.9271 | 0.8166 | 0.7384 | 0.7369 | 0.8104 |
1.3766 | 21.0526 | 20000 | 0.3541 | 0.7927 | 0.8845 | 0.8844 | 0.9252 | 0.8372 | 0.8541 | 0.9214 | 0.8232 | 0.7589 | 0.7623 | 0.8264 |
0.1549 | 25.2632 | 24000 | 0.3087 | 0.8151 | 0.8982 | 0.8981 | 0.9363 | 0.8528 | 0.8764 | 0.9273 | 0.8455 | 0.7821 | 0.7863 | 0.8465 |
1.3569 | 29.4737 | 28000 | 0.3299 | 0.8130 | 0.8971 | 0.8971 | 0.9416 | 0.8450 | 0.8653 | 0.9366 | 0.8415 | 0.7811 | 0.7883 | 0.8412 |
1.3663 | 33.6842 | 32000 | 0.2746 | 0.8337 | 0.9094 | 0.9094 | 0.9383 | 0.8793 | 0.8755 | 0.9444 | 0.8607 | 0.8076 | 0.8073 | 0.8593 |
0.6055 | 37.8947 | 36000 | 0.3022 | 0.8265 | 0.9052 | 0.9052 | 0.9412 | 0.8587 | 0.8790 | 0.9419 | 0.8523 | 0.7989 | 0.8052 | 0.8497 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support