norbert2_sentiment_norec_en_gpu_3000_rader_2_test

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6243
  • Compute Metrics: :
  • Accuracy: 0.6887
  • Balanced Accuracy: 0.5020
  • F1 Score: 0.8149
  • Recall: 0.9932
  • Precision: 0.6909

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Compute Metrics Accuracy Balanced Accuracy F1 Score Recall Precision
0.6753 0.94 11 0.6527 : 0.669 0.5064 0.7957 0.9343 0.6929
0.7261 1.94 22 0.6292 : 0.6813 0.5032 0.8080 0.9720 0.6914
0.7124 2.94 33 0.6263 : 0.688 0.5012 0.8145 0.9928 0.6905
0.7036 3.94 44 0.6271 : 0.686 0.5015 0.8126 0.9870 0.6907
0.7035 4.94 55 0.6243 : 0.6887 0.5020 0.8149 0.9932 0.6909

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support