SentenceTransformer based on Salesforce/SFR-Embedding-Code-400M_R

This is a sentence-transformers model finetuned from Salesforce/SFR-Embedding-Code-400M_R on around 1000000 Python samples from the Leetcode, Atcoder-ABC, Atcoder-ARC, Atcoder-AGC, Codechef, Codeforces datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Salesforce/SFR-Embedding-Code-400M_R
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • Leetcode
    • Atcoder
    • Codechef
    • Codeforces
    • CodeforcesPositive

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NewModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Nan-Do/Ranker")
# Run inference
sentences = [
    'You are given integers N, M and three integer sequences of length M: X = (X_1, X_2, \\ldots, X_M), Y = (Y_1, Y_2, \\ldots, Y_M), and Z = (Z_1, Z_2, \\ldots, Z_M). It is guaranteed that all elements of X and Y are between 1 and N, inclusive.\n\n  We call a length-N sequence of non-negative integers A = (A_1, A_2, \\ldots, A_N) a good sequence if and only if it satisfies the following condition:\n\n    * For every integer i with 1 \\le i \\le M, the XOR of A_{X_i} and A_{Y_i} is Z_i.\n\n  Determine whether a good sequence A=(A_1,A_2,\\ldots,A_N) exists, and if it exists, find one good sequence that minimizes the sum of its elements \\displaystyle \\sum_{i=1}^N A_i.\n\n  Notes on XOR For non-negative integers A and B, their XOR A \\oplus B is defined as follows:\n    * In the binary representation of A \\oplus B, the digit in the place corresponding to 2^k \\,(k \\ge 0) is 1 if and only if exactly one of the digits in the same place of A and B is 1; otherwise, it is 0.\n  For example, 3 \\oplus 5 = 6 (in binary: 011 \\oplus 101 = 110).\n\n  Constraints\n\n    * 1 \\le N \\le 2\\times 10^5\n    * 0 \\le M \\le 10^5\n    * 1 \\le X_i, Y_i \\le N\n    * 0 \\le Z_i \\le 10^9\n    * All input values are integers.\n\n    Input\n\n    The input is given from Standard Input in the following format:\n\n    N M\n    X_1 Y_1 Z_1\n    X_2 Y_2 Z_2\n    \\vdots\n    X_M Y_M Z_M\n    \n\n    Output\n\n    If no good sequence exists, print -1.\n\n    If a good sequence exists, print one good sequence that minimizes the sum of its elements, separated by spaces.\n\n    If there are multiple good sequences with the same minimum sum, printing any of them is accepted.\n\n  Sample Input 1\n\n  3 2\n  1 3 4\n  1 2 3\n  \n\n  Sample Output 1\n\n  0 3 4\n  \n\n  A=(0,3,4) is a good sequence because A_1 \\oplus A_2 = 3 and A_1 \\oplus A_3 = 4.\n\n  Other good sequences include A=(1,2,5) and A=(7,4,3), but A=(0,3,4) has the smallest sum among all good sequences.\n\n  Sample Input 2\n\n  3 3\n  1 3 4\n  1 2 3\n  2 3 5\n  \n\n  Sample Output 2\n\n  -1\n  \n\n  No good sequence exists, so print -1.\n\n  Sample Input 3\n\n  5 8\n  4 2 4\n  2 3 11\n  3 4 15\n  4 5 6\n  3 2 11\n  3 3 0\n  3 1 9\n  3 4 15\n  \n\n  Sample Output 3\n\n  0 2 9 6 0',
    'import sys\r\nsys.setrecursionlimit(10**7)\r\nfrom collections import *\r\nfrom bisect import *\r\nfrom itertools import *\r\nfrom functools import cache    #関数の定義の上に  @cache\u3000をつける\r\nfrom heapq import *\r\nfrom math import *\r\n\r\n\r\nN, M = map(int,input().split())\r\nG = [list() for i in range(N+1)]\r\n\r\nfor i in range(M):\r\n    x,y,z = map(int,input().split())\r\n    G[x].append((y,z))\r\n    G[y].append((x,z))\r\n\r\n\r\n\r\nvisited = [False]*(N+1)\r\nval = [-1]*(N+1)\r\nans = [0]*(N+1)\r\n\r\ndef bfs(start):\r\n    global visited,val\r\n    comp = [start]\r\n    q = deque([start])\r\n    visited[start] = True\r\n    val[start] = 0    \r\n\r\n    while q:\r\n        pos = q.popleft()\r\n        for nxt,z in G[pos]:\r\n            if visited[nxt]:\r\n                if val[nxt]^val[pos] != z:\r\n                    print(-1)\r\n                    sys.exit()\r\n            else:\r\n                visited[nxt] = True\r\n                val[nxt] = val[pos] ^ z\r\n                q.append(nxt)\r\n                comp.append(nxt)\r\n\r\n    return comp                \r\n\r\n\r\nfor i in range(1,N+1):\r\n    if len(G[i]) == 0:\r\n        continue\r\n\r\n    if visited[i]:\r\n        continue\r\n\r\n    comp = bfs(i)\r\n\r\n    for j in range(31):\r\n        cnt = 0\r\n        for ele in comp:\r\n            if val[ele] & (1<<j):\r\n                cnt += 1\r\n\r\n        if cnt < len(comp) - cnt:\r\n            for ele in comp:\r\n                if val[ele] & (1<<j):\r\n                    ans[ele] += 1<<j\r\n        else:\r\n            for ele in comp:\r\n                if not val[ele] & (1<<j):\r\n                    ans[ele] += 1<<j\r\n\r\nprint(*ans[1:])\r\n',
    '\r\nimport sys\r\nsys.setrecursionlimit(10**7)\r\nfrom collections import *\r\nfrom bisect import *\r\nfrom itertools import *\r\nfrom functools import cache    #関数の定義の上に  @cache\u3000をつける\r\nfrom heapq import *\r\nfrom math import *\r\n\r\n\r\nN, M = map(int,input().split())\r\nG = [list() for i in range(N+1)]\r\n\r\nfor i in range(M):\r\n    x,y,z = map(int,input().split())\r\n    G[x].append((y,z))\r\n    G[y].append((x,z))\r\n\r\nans = [0]*(N+1)\r\n\r\n\r\n\r\n\r\nvisited = [False]*(N+1)\r\n\r\n\r\nfor i in range(1,N+1):\r\n    if len(G[i]) == 0:\r\n        continue\r\n\r\n    if visited[i]:\r\n        continue\r\n\r\n    answer = 0\r\n    for j in range(31):\r\n        tv = [False]*(N+1)\r\n        tmp = [0]*(N+1)\r\n        cnt1 = 0\r\n        tmp[i] = 0\r\n        q = [i]\r\n        while q:\r\n            pos = q.pop()\r\n            if tv[pos]:\r\n                continue\r\n            tv[pos] = True\r\n            for nxt,w in G[pos]:\r\n                if tv[nxt]:\r\n                    if tmp[pos]^tmp[nxt] != (w>>j) & 1:\r\n                        print(-1)\r\n                        sys.exit()\r\n                else:\r\n                    tmp[nxt] = ((w>>j) & 1)^tmp[pos]\r\n                    if tmp[nxt] == 1:\r\n                        cnt1 += 1\r\n                    q.append(nxt)\r\n\r\n        tv = [False]*(N+1)\r\n        tmp = [0]*(N+1)\r\n        cnt2 = 1\r\n        tmp[i] = 1\r\n        q = [i]\r\n        while q:\r\n            pos = q.pop()\r\n            if tv[pos]:\r\n                continue\r\n            tv[pos] = True\r\n            for nxt,w in G[pos]:\r\n                if tv[nxt]:\r\n                    if tmp[pos]^tmp[nxt] != (w>>j) & 1:\r\n                        print(-1)\r\n                        sys.exit()\r\n                else:\r\n                    tmp[nxt] = ((w>>j) & 1)^tmp[pos]\r\n \r\n                    if tmp[nxt] == 1:\r\n                        cnt2 += 1\r\n                    q.append(nxt)  \r\n        \r\n            \r\n        if cnt1 < cnt2:\r\n            ans[i] += 0\r\n        else:\r\n            ans[i] += 1<<j\r\n\r\n    \r\n    q = [i] \r\n    while q:\r\n        pos = q.pop()\r\n        if visited[pos]:\r\n            continue\r\n        visited[pos] = True\r\n\r\n        for nxt, w in G[pos]:\r\n            if visited[nxt]:\r\n                continue\r\n            \r\n            ans[nxt] = ans[pos]^w\r\n            q.append(nxt)\r\n\r\nprint(*ans[1:])\r\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 1.0000, 1.0000],
#         [1.0000, 1.0000, 1.0000],
#         [1.0000, 1.0000, 1.0000]])

Training Details

Training Datasets

Leetcode

Leetcode

  • Dataset: Leetcode
  • Size: 79,862 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 83 tokens
    • mean: 363.93 tokens
    • max: 1064 tokens
    • min: 34 tokens
    • mean: 180.39 tokens
    • max: 1290 tokens
  • Samples:
    anchor positive
    You are given two arrays of integers, fruits and baskets, each of length n, where fruits[i] represents the quantity of the i^th type of fruit, and baskets[j] represents the capacity of the j^th basket.

    From left to right, place the fruits according to these rules:


    Each fruit type must be placed in the leftmost available basket with a capacity greater than or equal to the quantity of that fruit type.
    Each basket can hold only one type of fruit.
    If a fruit type cannot be placed in any basket, it remains unplaced.


    Return the number of fruit types that remain unplaced after all possible allocations are made.

     
    Example 1:


    Input: fruits = [4,2,5], baskets = [3,5,4]

    Output: 1

    Explanation:


    fruits[0] = 4 is placed in baskets[1] = 5.
    fruits[1] = 2 is placed in baskets[0] = 3.
    fruits[2] = 5 cannot be placed in baskets[2] = 4.


    Since one fruit type remains unplaced, we return 1.


    Example 2:


    Input: fruits = [3,6,1], baskets = [6,4,7]

    Output: 0

    Explanation:


    fruits[0] = 3 i...
    class Solution:
    def numOfUnplacedFruits(self, fruits: List[int], baskets: List[int]) -> int:
    result = 0
    max_val = max(baskets)
    for f in fruits:
    if f > max_val:
    result += 1
    continue
    i = 0
    while i < len(baskets) and baskets[i] < f:
    i += 1
    if i < len(baskets):
    baskets.pop(i)
    else:
    result += 1
    #print(baskets)
    return result
    You are given an integer array prices representing the daily price history of a stock, where prices[i] is the stock price on the i^th day.

    A smooth descent period of a stock consists of one or more contiguous days such that the price on each day is lower than the price on the preceding day by exactly 1. The first day of the period is exempted from this rule.

    Return the number of smooth descent periods.

     
    Example 1:

    Input: prices = [3,2,1,4]
    Output: 7
    Explanation: There are 7 smooth descent periods:
    [3], [2], [1], [4], [3,2], [2,1], and [3,2,1]
    Note that a period with one day is a smooth descent period by the definition.


    Example 2:

    Input: prices = [8,6,7,7]
    Output: 4
    Explanation: There are 4 smooth descent periods: [8], [6], [7], and [7]
    Note that [8,6] is not a smooth descent period as 8 - 6 ≠ 1.


    Example 3:

    Input: prices = [1]
    Output: 1
    Explanation: There is 1 smooth descent period: [1]


     
    Constraints:


    1 <= prices.length <= 10^5
    1 <= prices[i] <= 10^5


    class Solution:
    def getDescentPeriods(self, prices: List[int]) -> int:

    dp = [0 for _ in range(len(prices))]

    result = len(prices)

    for i in range(1, len(prices)):
    if prices[i] == prices[i-1] - 1:
    dp[i] = dp[i-1] + 1
    else:
    dp[i] = 0

    result += dp[i]

    return result
    You are given a 0-indexed string array words having length n and containing 0-indexed strings.

    You are allowed to perform the following operation any number of times (including zero):


    Choose integers i, j, x, and y such that 0 <= i, j < n, 0 <= x < words[i].length, 0 <= y < words[j].length, and swap the characters words[i][x] and words[j][y].


    Return an integer denoting the maximum number of palindromes words can contain, after performing some operations.

    Note: i and j may be equal during an operation.

     
    Example 1:

    Input: words = ["abbb","ba","aa"]
    Output: 3
    Explanation: In this example, one way to get the maximum number of palindromes is:
    Choose i = 0, j = 1, x = 0, y = 0, so we swap words[0][0] and words[1][0]. words becomes ["bbbb","aa","aa"].
    All strings in words are now palindromes.
    Hence, the maximum number of palindromes achievable is 3.

    Example 2:

    Input: words = ["abc","ab"]
    Output: 2
    Explanation: In this example, one way to get the maximum number of palindromes is:
    ...
    class Solution:
    def maxPalindromesAfterOperations(self, words: List[str]) -> int:
    word = [0]*26
    ar = list()
    for i in words:
    ar.append(len(i))
    for j in range(len(i)):
    word[ord(i[j])-97] += 1
    p,s = 0,0
    for k in word:
    p += k//2
    s += k%2
    ar.sort()
    ans = 0
    for m in ar:
    if m % 2 == 0: #even case
    if m//2 > p: break
    else:
    ans += 1
    p -= m//2
    else: # odd case
    if s == 0: #break case
    p -= 1
    s += 2
    s -= 1
    if m//2 > p: break
    else:
    ans += 1
    p -= m//2
    return ans


  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 15,
        "similarity_fct": "cos_sim",
        "mini_batch_size": 2,
        "gather_across_devices": false
    }
    
Atcoder

Atcoder

  • Dataset: Atcoder
  • Size: 478,734 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 73 tokens
    • mean: 376.31 tokens
    • max: 1415 tokens
    • min: 15 tokens
    • mean: 257.06 tokens
    • max: 2912 tokens
    • min: 3 tokens
    • mean: 260.5 tokens
    • max: 2902 tokens
  • Samples:
    anchor positive negative
    We have a permutation P = P_1, P_2, \ldots, P_N of 1, 2, \ldots, N.

    You have to do the following N - 1 operations on P, each exactly once, in some order:

    * Swap P_1 and P_2.

    * Swap P_2 and P_3.

    \vdots

    * Swap P_{N-1} and P_N.

    Your task is to sort P in ascending order by configuring the order of operations. If it is impossible, print -1 instead.

    Constraints

    * All values in input are integers.
    * 2 \leq N \leq 2 \times 10^5
    * P is a permutation of 1, 2, \ldots, N.

    Input

    Input is given from Standard Input in the following format:

    N

    P_1 P_2 \ldots P_N



    Output

    If it is impossible to sort P in ascending order by configuring the order of operations, print -1.

    Otherwise, print N-1 lines to represent a sequence of operations that sorts P in ascending order. The i-th line (1 \leq i \leq N - 1) should contain j, where the i-th operation swaps P_j and P_{j + 1}.

    If there are multiple such sequences of operations...
    def main():

    import sys

    input = sys.stdin.readline

    N = int(input())

    P = list(map(int, input().split()))

    pre = 1

    res = []

    Q = list(range(1,N+1))

    for i in range(N):

    if P[i] == pre:

    P[pre-1:i+1] = P[i:i+1] + P[pre-1:i]

    for j in range(i,pre-1,-1):

    res.append(j)

    pre = i + 1

    if P == Q and len(res) == N - 1:

    for i in res:

    print(i)

    else:

    print(-1)


    main()
    def main():

    import sys

    input = sys.stdin.readline

    N = int(input())

    P = list(map(int, input().split()))

    pre = 1

    res = []

    Q = list(range(1,N+1))

    for i in range(N):

    if P[i] == pre:

    P[pre-1:i+1] = P[i:i+1] + P[pre-1:i]

    if P == Q:

    print(-1)

    exit()

    for j in range(i,pre-1,-1):

    res.append(j)

    pre = i+1

    if P == Q:

    for i in res:

    print(i)

    else:

    print(-1)


    main()
    You are given an integer sequence of length N: A=(A_1,A_2,\ldots,A_N).

    You will perform the following consecutive operations just once:

    * Choose an integer x (0\leq x \leq N). If x is 0, do nothing. If x is 1 or greater, replace each of A_1,A_2,\ldots,A_x with L.

    * Choose an integer y (0\leq y \leq N). If y is 0, do nothing. If y is 1 or greater, replace each of A_{N},A_{N-1},\ldots,A_{N-y+1} with R.

    Print the minimum possible sum of the elements of A after the operations.

    Constraints

    * 1 \leq N \leq 2\times 10^5
    * -10^9 \leq L, R\leq 10^9
    * -10^9 \leq A_i\leq 10^9
    * All values in input are integers.

    Input

    Input is given from Standard Input in the following format:

    N L R

    A_1 A_2 \ldots A_N



    Output

    Print the answer.

    Sample Input 1

    5 4 3

    5 5 0 6 3



    Sample Output 1

    14



    If you choose x=2 and y=2, you will get A = (4,4,0,3,3), for the sum of 14, which is the minimum sum achievable.

    Sample Input...
    N,L,R = map(int,input().split())

    A = list(map(int,input().split()))

    rui1,rui2 = [],[]

    for i,v in enumerate(A):

    if i == 0:

    rui1.append(v)

    else:

    rui1.append(rui1[-1]+v)

    B = A[::-1]

    for i,v in enumerate(B):

    if i == 0:

    rui2.append(v)

    else:

    rui2.append(rui2[-1]+v)


    #print("rui1",rui1)

    #print("rui2",rui2)


    rui11,rui22 = [0],[]


    for i,v in enumerate(rui1):

    tmp = (i+1)*L

    rui11.append(rui1[i]-tmp)


    for i,v in enumerate(rui2):

    tmp = (i+1)*R

    rui22.append(rui2[i]-tmp)


    #print("rui11",rui11)

    #print("rui22",rui22[::-1])


    rui222 = [0]

    for i,v in enumerate(rui22):

    if i == 0:

    rui222.append(v)

    else:

    rui222.append(max(v,rui222[-1]))


    #print("rui222",rui222[::-1])

    rui222.reverse()

    tmpans = 0

    tmpans11 = 10*100(-1)

    for i,v in enumerate(rui11):

    tmpans11 = max(tmpans11,v)

    tmpans = max(tmpans11+rui222[i],tmpans)


    print(sum(A)-tmpans)

    N,L,R = map(int,input().split())

    A = list(map(int,input().split()))


    rui = []

    for i,v in enumerate(A):

    if i == 0:

    rui.append(v)

    else:

    rui.append(rui[-1]+v)

    #print("rui",rui)

    rui2 = []

    for i,v in enumerate(A[::-1]):

    if i == 0:

    rui2.append(v)

    else:

    rui2.append(rui2[-1]+v)


    rui11 = []

    for i,v in enumerate(rui):

    nex = (i+1)*L

    rui11.append(v-nex)


    #print("rui11",rui11)

    rui22 = []

    for i,v in enumerate(rui2):

    nex = (i+1)*R

    rui22.append(v-nex)

    rui33 = []

    for i,v in enumerate(rui22):

    if i == 0:

    rui33.append(v)

    else:

    rui33.append(max(rui33[-1],v))



    #print("rui22",rui22[::-1])

    #print("rui33",rui33[::-1])

    rui33.reverse()


    ans = max(rui33[0],max(rui11))


    for i,v in enumerate(rui11):

    if i == len(rui11)-1:

    break


    ans = max(ans,v+rui33[i+1])


    print(sum(A)-ans) #ans


    Snuke is giving cookies to his three goats.

    He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).

    Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.

    Constraints

    * 1 \leq A,B \leq 100
    * Both A and B are integers.

    Input

    Input is given from Standard Input in the following format:

    A B



    Output

    If it is possible to give cookies so that each of the three goats can have the same number of cookies, print Possible; otherwise, print Impossible.

    Sample Input 1

    4 5



    Sample Output 1

    Possible



    If Snuke gives nine cookies, each of the three goats can have three cookies.

    Sample Input 2

    1 1



    Sample Output 2

    Impossible



    Since there are only two cookies, the three goats cannot have the same number of cookies no matte...
    A,B=input().split()
    A=int(A)
    B=int(B)

    if A%3==0 or B%3==0 or (A+B)%3==0:
    print("Possible")
    else:
    print("Impossible")
    x=input()
    x=[int(i) for i in x.split()]
    if (x[0]+x[1])%3==0 and (x[0]+x[1]) !=0 :
    print("Possible")
    else:
    print("Impossible")
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.COSINE",
        "triplet_margin": 0.3
    }
    
Codechef

Codechef

  • Dataset: Codechef
  • Size: 68,517 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 165 tokens
    • mean: 575.4 tokens
    • max: 1373 tokens
    • min: 16 tokens
    • mean: 213.17 tokens
    • max: 2489 tokens
    • min: 7 tokens
    • mean: 206.87 tokens
    • max: 2640 tokens
  • Samples:
    anchor positive negative
    Swapping Marks Digits
    Alice scored $A$ marks and Bob scored $B$ marks in an exam. Both $A$ and $B$ are two-digit numbers that don't contain the digit $0$.

    Alice wants her marks to display higher than Bob's.
    For this, she can reverse her score and/or Bob's score.

    Is there a way for her score to display higher than Bob's?

    For example, if $A = 37$ and $B = 83$, Alice can reverse her score to make it $73$, and also reverse Bob's score to make it $38$, and now her score is higher.


    Input Format:
    - The first line of input will contain a single integer $T$, denoting the number of test cases.
    - The first and only line of each test case contains two space-separated integers $A$ and $B$ — the marks obtained by Alice and Bob, respectively.

    Output Format:
    For each test case, output on a new line the answer: "Yes" if Alice can change her score to display higher than Bob's, and "No" otherwise (without quotes).

    Each letter of the output may be printed in either uppercase or lowercase, i.e...
    # cook your dish here

    for _ in range(int(input())):

    a,b=map(int,input().split())

    temp1=a

    temp2=b

    alice=0

    bob=0

    while(a!=0):

    alice=alice*10+a%10

    a//=10

    while(b!=0):

    bob=bob*10+b%10

    b//=10

    if(alice>bob or temp1>temp2 or temp1>bob or alice>temp2):

    print("Yes")

    else:

    print("No")
    # cook your dish here

    for _ in range(int(input())):

    a,b=map(int,input().split())

    alice=0

    bob=0

    while(a!=0):

    alice=alice*10+a%10

    a//=10

    while(b!=0):

    bob=bob*10+b%10

    b//=10

    if(alice>bob):

    print("Yes")

    else:

    print("No")
    Difficulty Rating Order
    Our Chef has some students in his coding class who are practicing problems. Given the difficulty of the problems that the students have solved in order, help the Chef identify if they are solving them in non-decreasing order of difficulty. Non-decreasing means that the values in an array is either increasing or remaining the same, but not decreasing. That is, the students should not solve a problem with difficulty $d_1$, and then later a problem with difficulty $d_2$, where $d_1 > d_2$.

    Output “Yes” if the problems are attempted in non-decreasing order of difficulty rating and “No” if not.

    Input Format:
    - The first line of input will contain a single integer $T$, denoting the number of test cases. The description of the test cases follows.
    - Each test case consists of $2$ lines of input.
    - The first line contains a single integer $N$, the number of problems solved by the students
    - The second line contains $N$ space-separate integers, the difficulty r...
    def rating_order(arr):

    for i in range(len(arr)-1):

    if (arr[i]>arr[i+1]):

    return"no"

    return"yes"

    t=int(input())

    for i in range(t):

    n=int(input())

    arr=list(map(int,input().split()))

    print(rating_order(arr))
    def rating_order(arr):

    for i in range(len(arr)-1):

    if (arr[i]

    return"yes"

    return"no"

    t=int(input())

    for i in range(t):

    n=int(input())

    arr=list(map(int,input().split()))

    print(rating_order(arr))
    Read Pages
    Chef has started studying for the upcoming test. The textbook has $N$ pages in total. Chef wants to read at most $X$ pages a day for $Y$ days.

    Find out whether it is possible for Chef to complete the whole book.

    Input Format:
    - The first line of input will contain a single integer $T$, denoting the number of test cases.
    - The first and only line of each test case contains three space-separated integers $N, X,$ and $Y$ — the number of pages, the number of pages Chef can read in a day, and the number of days.

    Output Format:
    For each test case, output on a new line, YES, if Chef can complete the whole book in given time, and NO otherwise.

    You may print each character of the string in uppercase or lowercase. For example, Yes, YES, yes, and yES are all considered identical.

    Constraints:
    - $1 \leq T \leq 1000$
    - $1 \leq N \leq 100$
    - $1 \leq X, Y \leq 10$


    Sample 1:
    Input:
    4
    5 2 3
    10 3 3
    7 7 1
    3 2 1

    Output:
    YES
    NO
    YES
    NO

    Explanation:
    Test case $1$: Chef can...
    # Read the number of test cases

    T = int(input())


    # Process each test case

    for _ in range(T):

    # Read N, X, Y for the current test case

    N, X, Y = map(int, input().split())


    # Check if Chef can complete the book

    if X * Y >= N:

    print("YES")

    else:

    print("NO")
    # cook your dish here

    t = int(input())

    for _ n range(t):

    n,x,y = map(int,input().split())

    if x*y>=n:

    pritn("yes")

    else:

    print("no")
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.COSINE",
        "triplet_margin": 0.3
    }
    
Codeforces

Codeforces

  • Dataset: Codeforces
  • Size: 239,311 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 29 tokens
    • mean: 352.67 tokens
    • max: 1267 tokens
    • min: 20 tokens
    • mean: 124.62 tokens
    • max: 1071 tokens
    • min: 3 tokens
    • mean: 137.77 tokens
    • max: 2282 tokens
  • Samples:
    anchor positive negative
    Have you ever tried to explain to the coordinator, why it is eight hours to the contest and not a single problem has been prepared yet? Misha had. And this time he has a really strong excuse: he faced a space-time paradox! Space and time replaced each other.

    The entire universe turned into an enormous clock face with three hands — hour, minute, and second. Time froze, and clocks now show the time h hours, m minutes, s seconds.

    Last time Misha talked with the coordinator at t1 o'clock, so now he stands on the number t1 on the clock face. The contest should be ready by t2 o'clock. In the terms of paradox it means that Misha has to go to number t2 somehow. Note that he doesn't have to move forward only: in these circumstances time has no direction.

    Clock hands are very long, and Misha cannot get round them. He also cannot step over as it leads to the collapse of space-time. That is, if hour clock points 12 and Misha stands at 11 then he cannot move to 1 along the top arc. H...
    h, m, s, t1, t2 = map(int, input().split())
    m //= 5
    s //= 5
    a = [h, m, s, h + 12, m + 12, s + 12]
    up = 1
    dw = 1
    if t1 > t2:
    t1, t2 = t2, t1
    t1u = t1 + 12
    for i in a:
    if t1 <= i and i < t2:
    up = 0
    if t2 <= i and i < t1u:
    dw = 0
    if dw + up == 0:
    print('NO')
    else:
    print('YES')
    h, m, s, t1, t2 = tuple(map(int, input().split()))

    t2 *= 5
    t1 *= 5

    s = float(s)
    m = float(m + s / 12)
    h = float(h * 5 + m / 12)

    def dt(u, v):
    if v < u:
    return (60 - u) + v
    return v - u

    def check(t1, t2, h, m, s):
    d = dt(t1, t2)
    return d < dt(t1, h) and d < dt(t1, m) and d < dt(t1, s)

    r = check(t1, t2, h, m, s) or check(t2, t1, h, m, s)
    print("YES" if r else "NO")
    A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed.

    To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity.

    Hitagi's sequence a has a length of n. Lost elements in it are denoted by zeros. Kaiki provides another sequence b, whose length k equals the number of lost elements in a (i.e. the number of zeros). Hitagi is to replace each zero in a with an element from b so that each element in b should be used exactly once . Hitagi knows, however, that, apart from 0 , no integer occurs in a and b more than once in total.

    If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In othe...
    # bsdk idhar kya dekhne ko aaya hai, khud kr!!!
    # import math
    # from itertools import *
    # import random
    # import calendar
    # import datetime
    # import webbrowser

    n, m = map(int, input().split())
    arr = list(map(int, input().split()))
    discount = list(map(int, input().split()))
    arr[arr.index(0)] = discount[0]
    if m > 1 or arr != sorted(arr):
    print("Yes")
    else:
    print("No")
    q = list(map(int, input().split()))
    n, k = q[0], q[1]
    a = list(map(int, input().split()))
    b = list(map(int, input().split()))
    if k > 1:
    print('Yes')
    else:
    pos = a.index(0)
    if b[0] > a[pos - 1] and b[0] < a[pos + 1]:
    print('No')
    else:
    print('Yes')
    A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.

    Input

    The first line contai...
    n=int(input())
    sx=sy=sz=0
    for i in range(n):
    x, y, z = map(int, input().split())
    sx+=x
    sy+=y
    sz+=z
    i+=1
    if sx == 0 and sy ==0 and sz == 0:
    print('YES')
    else:
    print('NO')
    a=int(input())
    for i in range(0,a):
    x_i=list(input())
    x=sum(int(x_i[0]) for i in range(0,a))
    y=sum(int(x_i[1]) for i in range(0,a))
    z=sum(int(x_i[-1]) for i in range(0,a))
    if x==0 and y==0 and z==0:
    print('YES')
    else:
    print('NO')
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.COSINE",
        "triplet_margin": 0.3
    }
    
CodeforcesPositive

CodeforcesPositive

  • Dataset: CodeforcesPositive
  • Size: 102,336 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 51 tokens
    • mean: 676.52 tokens
    • max: 1868 tokens
    • min: 16 tokens
    • mean: 249.47 tokens
    • max: 3445 tokens
  • Samples:
    anchor positive
    We will consider the numbers $$$a$$$ and $$$b$$$ as adjacent if they differ by exactly one, that is, $$$|a-b|=1$$$.

    We will consider cells of a square matrix $$$n \times n$$$ as adjacent if they have a common side, that is, for cell $$$(r, c)$$$ cells $$$(r, c-1)$$$, $$$(r, c+1)$$$, $$$(r-1, c)$$$ and $$$(r+1, c)$$$ are adjacent to it.

    For a given number $$$n$$$, construct a square matrix $$$n \times n$$$ such that:

    * Each integer from $$$1$$$ to $$$n^2$$$ occurs in this matrix exactly once;
    * If $$$(r_1, c_1)$$$ and $$$(r_2, c_2)$$$ are adjacent cells, then the numbers written in them must not be adjacent .
    Input

    The first line contains one integer $$$t$$$ ($$$1 \le t \le 100$$$). Then $$$t$$$ test cases follow.

    Each test case is characterized by one integer $$$n$$$ ($$$1 \le n \le 100$$$).

    Output

    For each test case, output:

    * -1 , if the required matrix does not exist;
    * the required matrix, otherwise (any such matrix if...
    import sys
    import os.path
    from collections import *
    import math
    import bisect

    if (os.path.exists('input.txt')):
    sys.stdin = open("input.txt", "r")
    sys.stdout = open("output.txt", "w")

    ##########################################################

    t = int(input())
    while t:
    t -= 1
    n = int(input())
    if n == 2:
    print(-1)
    else:
    arr = [[0 for i in range(n)] for i in range(n)]
    x = 1
    for i in range(n):
    if(i % 2 == 0):
    for j in range(0,n,2):
    arr[i][j] = x
    x += 1
    else:
    for j in range(1,n,2):
    arr[i][j] = x
    x += 1

    for i in range(n):
    if i % 2:
    for j in range(0,n,2):
    arr[i][j] = x
    x += 1
    else:
    for j in range(1,n,2):
    arr[i][j] = x
    x += 1

    for i in arr:
    ...
    You are given an array $$$a_1, a_2, \dots, a_n$$$ consisting of $$$n$$$ distinct integers. Count the number of pairs of indices $$$(i, j)$$$ such that $$$i < j$$$ and $$$a_i \cdot a_j = i + j$$$.

    Input

    The first line contains one integer $$$t$$$ ($$$1 \leq t \leq 10^4$$$) — the number of test cases. Then $$$t$$$ cases follow.

    The first line of each test case contains one integer $$$n$$$ ($$$2 \leq n \leq 10^5$$$) — the length of array $$$a$$$.

    The second line of each test case contains $$$n$$$ space separated integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq 2 \cdot n$$$) — the array $$$a$$$. It is guaranteed that all elements are distinct .

    It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.

    Output

    For each test case, output the number of pairs of indices $$$(i, j)$$$ such that $$$i < j$$$ and $$$a_i \cdot a_j = i + j$$$.

    Example
    Input

    3
    2
    3 1
    ...
    import sys

    input = sys.stdin.readline

    def pleasantPairs(n, arr):
    res = 0

    for j in range(1, n+1):
    if arr[j] >= 2*j: continue
    tmp = 1
    while (tmp * arr[j]) < (2 * j):
    i = tmp * arr[j] - j
    if i > 0 and arr[i] == tmp:
    res += 1
    tmp += 1

    return res


    def main():
    for t in range(int(input())):
    n = int(input())
    arr = [-1]
    for i in input().split():
    arr.append(int(i))

    print(pleasantPairs(n, arr))


    if name == 'main':
    main()
    Let's call a positive integer $$$n$$$ ordinary if in the decimal notation all its digits are the same. For example, $$$1$$$, $$$2$$$ and $$$99$$$ are ordinary numbers, but $$$719$$$ and $$$2021$$$ are not ordinary numbers.

    For a given number $$$n$$$, find the number of ordinary numbers among the numbers from $$$1$$$ to $$$n$$$.

    Input

    The first line contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$). Then $$$t$$$ test cases follow.

    Each test case is characterized by one integer $$$n$$$ ($$$1 \le n \le 10^9$$$).

    Output

    For each test case output the number of ordinary numbers among numbers from $$$1$$$ to $$$n$$$.

    Example
    Input

    6
    1
    2
    3
    4
    5
    100

    Output

    1
    2
    3
    4
    5
    18
    # Ordenary numbers
    t = int(input())
    for _ in range(t):
    n = int(input())
    digit = 0
    test = n
    num = 0
    while test:
    digit += 1
    test //= 10
    # print(digit,n)
    test = 10
    while test:
    num = 0
    test -= 1
    for i in range(digit):
    num = num * 10 + test
    if num <= n:
    break
    num = 0
    num = digit * test
    num +=( (digit - 1) * (9 - test))
    print(num)
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 15,
        "similarity_fct": "cos_sim",
        "mini_batch_size": 2,
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • num_train_epochs: 1
  • lr_scheduler_type: constant
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: constant
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss
0.0010 1000 0.2449
0.0021 2000 0.2364
0.0031 3000 0.2453
0.0041 4000 0.2412
0.0052 5000 0.2484
0.0062 6000 0.2447
0.0072 7000 0.2475
0.0083 8000 0.2414
0.0093 9000 0.2361
0.0103 10000 0.2405
0.0114 11000 0.2419
0.0124 12000 0.2416
0.0134 13000 0.2444
0.0145 14000 0.2429
0.0155 15000 0.2412
0.0165 16000 0.2454
0.0175 17000 0.2375
0.0186 18000 0.2394
0.0196 19000 0.2407
0.0206 20000 0.2449
0.0217 21000 0.2444
0.0227 22000 0.2414
0.0237 23000 0.241
0.0248 24000 0.2417
0.0258 25000 0.2454
0.0268 26000 0.2412
0.0279 27000 0.2425
0.0289 28000 0.2483
0.0299 29000 0.2416
0.0310 30000 0.2397
0.0320 31000 0.24
0.0330 32000 0.2458
0.0341 33000 0.2479
0.0351 34000 0.2373
0.0361 35000 0.2503
0.0372 36000 0.2403
0.0382 37000 0.25
0.0392 38000 0.2387
0.0403 39000 0.2388
0.0413 40000 0.2475
0.0423 41000 0.2347
0.0434 42000 0.2412
0.0444 43000 0.2505
0.0454 44000 0.2422
0.0465 45000 0.2473
0.0475 46000 0.2401
0.0485 47000 0.241
0.0495 48000 0.2399
0.0506 49000 0.2471
0.0516 50000 0.2414
0.0526 51000 0.242
0.0537 52000 0.2413
0.0547 53000 0.2358
0.0557 54000 0.239
0.0568 55000 0.2399
0.0578 56000 0.2492
0.0588 57000 0.2402
0.0599 58000 0.2483
0.0609 59000 0.2476
0.0619 60000 0.2467
0.0630 61000 0.2393
0.0640 62000 0.2485
0.0650 63000 0.246
0.0661 64000 0.2447
0.0671 65000 0.2382
0.0681 66000 0.2472
0.0692 67000 0.2426
0.0702 68000 0.2425
0.0712 69000 0.2393
0.0723 70000 0.2452
0.0733 71000 0.2442
0.0743 72000 0.2418
0.0754 73000 0.2501
0.0764 74000 0.24
0.0774 75000 0.2448
0.0785 76000 0.2373
0.0795 77000 0.241
0.0805 78000 0.247
0.0815 79000 0.2455
0.0826 80000 0.2352
0.0836 81000 0.2404
0.0846 82000 0.2439
0.0857 83000 0.2389
0.0867 84000 0.2515
0.0877 85000 0.2425
0.0888 86000 0.246
0.0898 87000 0.2433
0.0908 88000 0.238
0.0919 89000 0.242
0.0929 90000 0.2428
0.0939 91000 0.2412
0.0950 92000 0.2489
0.0960 93000 0.2407
0.0970 94000 0.2471
0.0981 95000 0.2341
0.0991 96000 0.2389
0.1001 97000 0.2484
0.1012 98000 0.2498
0.1022 99000 0.2441
0.1032 100000 0.2463
0.1043 101000 0.2406
0.1053 102000 0.2377
0.1063 103000 0.2426
0.1074 104000 0.2406
0.1084 105000 0.2417
0.1094 106000 0.2519
0.1105 107000 0.2426
0.1115 108000 0.2384
0.1125 109000 0.2422
0.1135 110000 0.2475
0.1146 111000 0.2421
0.1156 112000 0.2425
0.1166 113000 0.2456
0.1177 114000 0.2407
0.1187 115000 0.2464
0.1197 116000 0.2406
0.1208 117000 0.2479
0.1218 118000 0.2403
0.1228 119000 0.2402
0.1239 120000 0.2422
0.1249 121000 0.2485
0.1259 122000 0.2432
0.1270 123000 0.2414
0.1280 124000 0.2495
0.1290 125000 0.2333
0.1301 126000 0.2493
0.1311 127000 0.2469
0.1321 128000 0.2365
0.1332 129000 0.2419
0.1342 130000 0.2438
0.1352 131000 0.2402
0.1363 132000 0.236
0.1373 133000 0.2431
0.1383 134000 0.2379
0.1394 135000 0.2525
0.1404 136000 0.2414
0.1414 137000 0.2361
0.1425 138000 0.2405
0.1435 139000 0.2383
0.1445 140000 0.2494
0.1455 141000 0.2425
0.1466 142000 0.2462
0.1476 143000 0.2352
0.1486 144000 0.2422
0.1497 145000 0.2458
0.1507 146000 0.2463
0.1517 147000 0.2441
0.1528 148000 0.2438
0.1538 149000 0.2444
0.1548 150000 0.2546
0.1559 151000 0.2382
0.1569 152000 0.2464
0.1579 153000 0.2369
0.1590 154000 0.2475
0.1600 155000 0.244
0.1610 156000 0.2459
0.1621 157000 0.2506
0.1631 158000 0.2412
0.1641 159000 0.2427
0.1652 160000 0.2391
0.1662 161000 0.2382
0.1672 162000 0.2412
0.1683 163000 0.241
0.1693 164000 0.2459
0.1703 165000 0.2377
0.1714 166000 0.2436
0.1724 167000 0.2429
0.1734 168000 0.2378
0.1744 169000 0.2458
0.1755 170000 0.2474
0.1765 171000 0.242
0.1775 172000 0.2433
0.1786 173000 0.2398
0.1796 174000 0.2509
0.1806 175000 0.2441
0.1817 176000 0.2443
0.1827 177000 0.2406
0.1837 178000 0.2476
0.1848 179000 0.2377
0.1858 180000 0.2413
0.1868 181000 0.2424
0.1879 182000 0.2471
0.1889 183000 0.2465
0.1899 184000 0.2469
0.1910 185000 0.2442
0.1920 186000 0.2375
0.1930 187000 0.2428
0.1941 188000 0.245
0.1951 189000 0.2454
0.1961 190000 0.2387
0.1972 191000 0.2494
0.1982 192000 0.239
0.1992 193000 0.2464
0.2003 194000 0.2468
0.2013 195000 0.2413
0.2023 196000 0.24
0.2034 197000 0.2462
0.2044 198000 0.2494
0.2054 199000 0.2436
0.2064 200000 0.2399
0.2075 201000 0.2427
0.2085 202000 0.2432
0.2095 203000 0.2388
0.2106 204000 0.2432
0.2116 205000 0.2426
0.2126 206000 0.2494
0.2137 207000 0.2457
0.2147 208000 0.2425
0.2157 209000 0.2474
0.2168 210000 0.2461
0.2178 211000 0.2464
0.2188 212000 0.2491
0.2199 213000 0.2438
0.2209 214000 0.2461
0.2219 215000 0.2398
0.2230 216000 0.24
0.2240 217000 0.2369
0.2250 218000 0.241
0.2261 219000 0.2478
0.2271 220000 0.2494
0.2281 221000 0.2485
0.2292 222000 0.2492
0.2302 223000 0.2494
0.2312 224000 0.2464
0.2323 225000 0.2436
0.2333 226000 0.2486
0.2343 227000 0.2493
0.2354 228000 0.2409
0.2364 229000 0.2453
0.2374 230000 0.2468
0.2384 231000 0.2454
0.2395 232000 0.2424
0.2405 233000 0.2437
0.2415 234000 0.2511
0.2426 235000 0.2424
0.2436 236000 0.2455
0.2446 237000 0.2405
0.2457 238000 0.2447
0.2467 239000 0.2424
0.2477 240000 0.2417
0.2488 241000 0.2429
0.2498 242000 0.2434
0.2508 243000 0.2413
0.2519 244000 0.2433
0.2529 245000 0.2401
0.2539 246000 0.2445
0.2550 247000 0.2457
0.2560 248000 0.2453
0.2570 249000 0.2439
0.2581 250000 0.2467
0.2591 251000 0.2439
0.2601 252000 0.2404
0.2612 253000 0.2426
0.2622 254000 0.2448
0.2632 255000 0.2431
0.2643 256000 0.234
0.2653 257000 0.25
0.2663 258000 0.2507
0.2674 259000 0.2501
0.2684 260000 0.2403
0.2694 261000 0.2444
0.2704 262000 0.2468
0.2715 263000 0.2407
0.2725 264000 0.2436
0.2735 265000 0.2464
0.2746 266000 0.2419
0.2756 267000 0.2493
0.2766 268000 0.2482
0.2777 269000 0.2425
0.2787 270000 0.243
0.2797 271000 0.244
0.2808 272000 0.2419
0.2818 273000 0.2448
0.2828 274000 0.2429
0.2839 275000 0.2474
0.2849 276000 0.2483
0.2859 277000 0.237
0.2870 278000 0.2463
0.2880 279000 0.2431
0.2890 280000 0.2469
0.2901 281000 0.2362
0.2911 282000 0.2419
0.2921 283000 0.2461
0.2932 284000 0.2426
0.2942 285000 0.2422
0.2952 286000 0.2458
0.2963 287000 0.249
0.2973 288000 0.243
0.2983 289000 0.2434
0.2994 290000 0.2413
0.3004 291000 0.2476
0.3014 292000 0.2446
0.3024 293000 0.2468
0.3035 294000 0.2411
0.3045 295000 0.2463
0.3055 296000 0.2464
0.3066 297000 0.2394
0.3076 298000 0.2503
0.3086 299000 0.2427
0.3097 300000 0.2515
0.3107 301000 0.2428
0.3117 302000 0.2478
0.3128 303000 0.2425
0.3138 304000 0.2474
0.3148 305000 0.2401
0.3159 306000 0.2455
0.3169 307000 0.2463
0.3179 308000 0.2441
0.3190 309000 0.2487
0.3200 310000 0.2385
0.3210 311000 0.2442
0.3221 312000 0.2454
0.3231 313000 0.2333
0.3241 314000 0.2393
0.3252 315000 0.2465
0.3262 316000 0.2349
0.3272 317000 0.2405
0.3283 318000 0.2404
0.3293 319000 0.2434
0.3303 320000 0.243
0.3314 321000 0.2409
0.3324 322000 0.2398
0.3334 323000 0.2491
0.3344 324000 0.246
0.3355 325000 0.2449
0.3365 326000 0.246
0.3375 327000 0.2445
0.3386 328000 0.2484
0.3396 329000 0.2379
0.3406 330000 0.2439
0.3417 331000 0.2385
0.3427 332000 0.2444
0.3437 333000 0.2451
0.3448 334000 0.243
0.3458 335000 0.2455
0.3468 336000 0.2413
0.3479 337000 0.2436
0.3489 338000 0.2387
0.3499 339000 0.2443
0.3510 340000 0.2396
0.3520 341000 0.2385
0.3530 342000 0.2435
0.3541 343000 0.2384
0.3551 344000 0.2386
0.3561 345000 0.2422
0.3572 346000 0.2477
0.3582 347000 0.2417
0.3592 348000 0.2466
0.3603 349000 0.2456
0.3613 350000 0.2446
0.3623 351000 0.2375
0.3634 352000 0.2358
0.3644 353000 0.2373
0.3654 354000 0.2445
0.3664 355000 0.2378
0.3675 356000 0.2459
0.3685 357000 0.2476
0.3695 358000 0.2437
0.3706 359000 0.242
0.3716 360000 0.2404
0.3726 361000 0.2473
0.3737 362000 0.2461
0.3747 363000 0.2412
0.3757 364000 0.24
0.3768 365000 0.2426
0.3778 366000 0.242
0.3788 367000 0.2428
0.3799 368000 0.2446
0.3809 369000 0.2453
0.3819 370000 0.2441
0.3830 371000 0.2529
0.3840 372000 0.246
0.3850 373000 0.2396
0.3861 374000 0.2422
0.3871 375000 0.2469
0.3881 376000 0.2436
0.3892 377000 0.2422
0.3902 378000 0.2416
0.3912 379000 0.2501
0.3923 380000 0.2443
0.3933 381000 0.2381
0.3943 382000 0.2392
0.3954 383000 0.2422
0.3964 384000 0.2496
0.3974 385000 0.243
0.3984 386000 0.2431
0.3995 387000 0.2426
0.4005 388000 0.2441
0.4015 389000 0.2434
0.4026 390000 0.2423
0.4036 391000 0.2444
0.4046 392000 0.2387
0.4057 393000 0.2386
0.4067 394000 0.2387
0.4077 395000 0.2467
0.4088 396000 0.2413
0.4098 397000 0.2471
0.4108 398000 0.2435
0.4119 399000 0.2424
0.4129 400000 0.2446
0.4139 401000 0.243
0.4150 402000 0.2436
0.4160 403000 0.2384
0.4170 404000 0.2404
0.4181 405000 0.2375
0.4191 406000 0.2455
0.4201 407000 0.2379
0.4212 408000 0.2487
0.4222 409000 0.244
0.4232 410000 0.2368
0.4243 411000 0.2415
0.4253 412000 0.2505
0.4263 413000 0.239
0.4274 414000 0.2431
0.4284 415000 0.2385
0.4294 416000 0.2515
0.4304 417000 0.2458
0.4315 418000 0.2433
0.4325 419000 0.239
0.4335 420000 0.2461
0.4346 421000 0.2474
0.4356 422000 0.2419
0.4366 423000 0.2451
0.4377 424000 0.2553
0.4387 425000 0.2486
0.4397 426000 0.2403
0.4408 427000 0.2429
0.4418 428000 0.2464
0.4428 429000 0.243
0.4439 430000 0.2446
0.4449 431000 0.2419
0.4459 432000 0.2407
0.4470 433000 0.2425
0.4480 434000 0.2429
0.4490 435000 0.2424
0.4501 436000 0.2373
0.4511 437000 0.2493
0.4521 438000 0.2403
0.4532 439000 0.2424
0.4542 440000 0.2501
0.4552 441000 0.2414
0.4563 442000 0.2472
0.4573 443000 0.2367
0.4583 444000 0.2481
0.4594 445000 0.2439
0.4604 446000 0.2466
0.4614 447000 0.241
0.4624 448000 0.2425
0.4635 449000 0.2367
0.4645 450000 0.2421
0.4655 451000 0.2386
0.4666 452000 0.2357
0.4676 453000 0.2464
0.4686 454000 0.2422
0.4697 455000 0.2443
0.4707 456000 0.2414
0.4717 457000 0.2483
0.4728 458000 0.2423
0.4738 459000 0.2386
0.4748 460000 0.2445
0.4759 461000 0.2453
0.4769 462000 0.2363
0.4779 463000 0.2432
0.4790 464000 0.2455
0.4800 465000 0.2376
0.4810 466000 0.2441
0.4821 467000 0.2466
0.4831 468000 0.2379
0.4841 469000 0.2429
0.4852 470000 0.2454
0.4862 471000 0.2439
0.4872 472000 0.2466
0.4883 473000 0.2459
0.4893 474000 0.2431
0.4903 475000 0.2429
0.4913 476000 0.2421
0.4924 477000 0.2405
0.4934 478000 0.2429
0.4944 479000 0.2435
0.4955 480000 0.2422
0.4965 481000 0.2419
0.4975 482000 0.2467
0.4986 483000 0.2409
0.4996 484000 0.2424
0.5006 485000 0.2452
0.5017 486000 0.2416
0.5027 487000 0.2455
0.5037 488000 0.2467
0.5048 489000 0.2467
0.5058 490000 0.243
0.5068 491000 0.2397
0.5079 492000 0.2385
0.5089 493000 0.2425
0.5099 494000 0.2501
0.5110 495000 0.2433
0.5120 496000 0.2461
0.5130 497000 0.2381
0.5141 498000 0.2464
0.5151 499000 0.248
0.5161 500000 0.2478
0.5172 501000 0.2386
0.5182 502000 0.2427
0.5192 503000 0.2484
0.5203 504000 0.2403
0.5213 505000 0.2398
0.5223 506000 0.2468
0.5233 507000 0.2444
0.5244 508000 0.2445
0.5254 509000 0.2446
0.5264 510000 0.2463
0.5275 511000 0.2495
0.5285 512000 0.2471
0.5295 513000 0.2402
0.5306 514000 0.2404
0.5316 515000 0.2442
0.5326 516000 0.2398
0.5337 517000 0.2377
0.5347 518000 0.2463
0.5357 519000 0.2418
0.5368 520000 0.2532
0.5378 521000 0.2462
0.5388 522000 0.2419
0.5399 523000 0.246
0.5409 524000 0.2365
0.5419 525000 0.2419
0.5430 526000 0.248
0.5440 527000 0.2464
0.5450 528000 0.2395
0.5461 529000 0.2405
0.5471 530000 0.24
0.5481 531000 0.2388
0.5492 532000 0.2418
0.5502 533000 0.2473
0.5512 534000 0.2448
0.5523 535000 0.2458
0.5533 536000 0.2447
0.5543 537000 0.2364
0.5553 538000 0.2483
0.5564 539000 0.2365
0.5574 540000 0.2463
0.5584 541000 0.2437
0.5595 542000 0.2387
0.5605 543000 0.2411
0.5615 544000 0.2451
0.5626 545000 0.2486
0.5636 546000 0.2374
0.5646 547000 0.2384
0.5657 548000 0.2428
0.5667 549000 0.2443
0.5677 550000 0.2404
0.5688 551000 0.2391
0.5698 552000 0.2449
0.5708 553000 0.2484
0.5719 554000 0.2422
0.5729 555000 0.2523
0.5739 556000 0.2423
0.5750 557000 0.2435
0.5760 558000 0.2373
0.5770 559000 0.2481
0.5781 560000 0.2407
0.5791 561000 0.2431
0.5801 562000 0.243
0.5812 563000 0.2457
0.5822 564000 0.2459
0.5832 565000 0.2461
0.5843 566000 0.2392
0.5853 567000 0.2416
0.5863 568000 0.245
0.5873 569000 0.2437
0.5884 570000 0.2438
0.5894 571000 0.2416
0.5904 572000 0.249
0.5915 573000 0.2409
0.5925 574000 0.2427
0.5935 575000 0.2473
0.5946 576000 0.2429
0.5956 577000 0.2429
0.5966 578000 0.242
0.5977 579000 0.2418
0.5987 580000 0.2483
0.5997 581000 0.2434
0.6008 582000 0.241
0.6018 583000 0.2393
0.6028 584000 0.2379
0.6039 585000 0.2378
0.6049 586000 0.2427
0.6059 587000 0.2417
0.6070 588000 0.2446
0.6080 589000 0.2469
0.6090 590000 0.2478
0.6101 591000 0.2489
0.6111 592000 0.2415
0.6121 593000 0.2446
0.6132 594000 0.2389
0.6142 595000 0.2381
0.6152 596000 0.2409
0.6163 597000 0.2538
0.6173 598000 0.2408
0.6183 599000 0.2436
0.6193 600000 0.2448
0.6204 601000 0.2393
0.6214 602000 0.2415
0.6224 603000 0.2404
0.6235 604000 0.2444
0.6245 605000 0.2403
0.6255 606000 0.2357
0.6266 607000 0.2502
0.6276 608000 0.2425
0.6286 609000 0.2408
0.6297 610000 0.2437
0.6307 611000 0.2416
0.6317 612000 0.2393
0.6328 613000 0.2419
0.6338 614000 0.2419
0.6348 615000 0.2395
0.6359 616000 0.2459
0.6369 617000 0.2458
0.6379 618000 0.2432
0.6390 619000 0.2474
0.6400 620000 0.235
0.6410 621000 0.2468
0.6421 622000 0.2397
0.6431 623000 0.2363
0.6441 624000 0.2442
0.6452 625000 0.2487
0.6462 626000 0.245
0.6472 627000 0.2461
0.6483 628000 0.2396
0.6493 629000 0.2429
0.6503 630000 0.2448
0.6513 631000 0.2431
0.6524 632000 0.2502
0.6534 633000 0.2525
0.6544 634000 0.2407
0.6555 635000 0.2448
0.6565 636000 0.2442
0.6575 637000 0.2417
0.6586 638000 0.2486
0.6596 639000 0.2507
0.6606 640000 0.2398
0.6617 641000 0.2471
0.6627 642000 0.2435
0.6637 643000 0.2437
0.6648 644000 0.2446
0.6658 645000 0.2467
0.6668 646000 0.2467
0.6679 647000 0.2364
0.6689 648000 0.2418
0.6699 649000 0.245
0.6710 650000 0.243
0.6720 651000 0.2387
0.6730 652000 0.2424
0.6741 653000 0.2365
0.6751 654000 0.2366
0.6761 655000 0.2425
0.6772 656000 0.2369
0.6782 657000 0.239
0.6792 658000 0.2447
0.6803 659000 0.2417
0.6813 660000 0.2457
0.6823 661000 0.2452
0.6833 662000 0.242
0.6844 663000 0.255
0.6854 664000 0.2451
0.6864 665000 0.2375
0.6875 666000 0.2441
0.6885 667000 0.2509
0.6895 668000 0.2415
0.6906 669000 0.246
0.6916 670000 0.24
0.6926 671000 0.2372
0.6937 672000 0.2504
0.6947 673000 0.2443
0.6957 674000 0.2444
0.6968 675000 0.2448
0.6978 676000 0.2411
0.6988 677000 0.2437
0.6999 678000 0.2432
0.7009 679000 0.2475
0.7019 680000 0.2352
0.7030 681000 0.246
0.7040 682000 0.2451
0.7050 683000 0.2406
0.7061 684000 0.2428
0.7071 685000 0.2433
0.7081 686000 0.2415
0.7092 687000 0.2479
0.7102 688000 0.2405
0.7112 689000 0.2379
0.7123 690000 0.2389
0.7133 691000 0.2414
0.7143 692000 0.2398
0.7153 693000 0.2369
0.7164 694000 0.2465
0.7174 695000 0.2426
0.7184 696000 0.2417
0.7195 697000 0.2422
0.7205 698000 0.2386
0.7215 699000 0.2412
0.7226 700000 0.2508
0.7236 701000 0.241
0.7246 702000 0.2427
0.7257 703000 0.2345
0.7267 704000 0.2465
0.7277 705000 0.2483
0.7288 706000 0.2395
0.7298 707000 0.2435
0.7308 708000 0.2434
0.7319 709000 0.2416
0.7329 710000 0.2421
0.7339 711000 0.2412
0.7350 712000 0.2389
0.7360 713000 0.2452
0.7370 714000 0.2428
0.7381 715000 0.2422
0.7391 716000 0.2364
0.7401 717000 0.2439
0.7412 718000 0.2435
0.7422 719000 0.2401
0.7432 720000 0.2441
0.7443 721000 0.2482
0.7453 722000 0.2417
0.7463 723000 0.2474
0.7473 724000 0.2451
0.7484 725000 0.2387
0.7494 726000 0.2422
0.7504 727000 0.2453
0.7515 728000 0.2437
0.7525 729000 0.2481
0.7535 730000 0.2451
0.7546 731000 0.2426
0.7556 732000 0.242
0.7566 733000 0.245
0.7577 734000 0.2425
0.7587 735000 0.2413
0.7597 736000 0.2501
0.7608 737000 0.2441
0.7618 738000 0.2442
0.7628 739000 0.2468
0.7639 740000 0.2419
0.7649 741000 0.2409
0.7659 742000 0.2423
0.7670 743000 0.2493
0.7680 744000 0.2469
0.7690 745000 0.249
0.7701 746000 0.2423
0.7711 747000 0.2414
0.7721 748000 0.2408
0.7732 749000 0.2407
0.7742 750000 0.2477
0.7752 751000 0.2403
0.7763 752000 0.2504
0.7773 753000 0.2358
0.7783 754000 0.2465
0.7793 755000 0.2432
0.7804 756000 0.2407
0.7814 757000 0.2407
0.7824 758000 0.2407
0.7835 759000 0.2441
0.7845 760000 0.2426
0.7855 761000 0.2395
0.7866 762000 0.2428
0.7876 763000 0.2403
0.7886 764000 0.2394
0.7897 765000 0.2424
0.7907 766000 0.2489
0.7917 767000 0.2417
0.7928 768000 0.2423
0.7938 769000 0.2366
0.7948 770000 0.2508
0.7959 771000 0.2451
0.7969 772000 0.2454
0.7979 773000 0.2419
0.7990 774000 0.2498
0.8000 775000 0.2406
0.8010 776000 0.2344
0.8021 777000 0.2518
0.8031 778000 0.249
0.8041 779000 0.2383
0.8052 780000 0.2442
0.8062 781000 0.243
0.8072 782000 0.2422
0.8082 783000 0.2476
0.8093 784000 0.2417
0.8103 785000 0.2417
0.8113 786000 0.2445
0.8124 787000 0.2414
0.8134 788000 0.2517
0.8144 789000 0.2431
0.8155 790000 0.2467
0.8165 791000 0.2483
0.8175 792000 0.2397
0.8186 793000 0.2467
0.8196 794000 0.2438
0.8206 795000 0.247
0.8217 796000 0.2446
0.8227 797000 0.2372
0.8237 798000 0.2362
0.8248 799000 0.2421
0.8258 800000 0.2404
0.8268 801000 0.2376
0.8279 802000 0.2406
0.8289 803000 0.2497
0.8299 804000 0.2475
0.8310 805000 0.2418
0.8320 806000 0.2379
0.8330 807000 0.2431
0.8341 808000 0.2472
0.8351 809000 0.2485
0.8361 810000 0.2498
0.8372 811000 0.2424
0.8382 812000 0.2434
0.8392 813000 0.2452
0.8402 814000 0.2396
0.8413 815000 0.2472
0.8423 816000 0.2529
0.8433 817000 0.2462
0.8444 818000 0.2436
0.8454 819000 0.2435
0.8464 820000 0.2417
0.8475 821000 0.2453
0.8485 822000 0.2455
0.8495 823000 0.2374
0.8506 824000 0.2416
0.8516 825000 0.2432
0.8526 826000 0.2459
0.8537 827000 0.2407
0.8547 828000 0.247
0.8557 829000 0.2399
0.8568 830000 0.2346
0.8578 831000 0.2446
0.8588 832000 0.2399
0.8599 833000 0.2433
0.8609 834000 0.2468
0.8619 835000 0.2464
0.8630 836000 0.2505
0.8640 837000 0.2437
0.8650 838000 0.2419
0.8661 839000 0.2449
0.8671 840000 0.2504
0.8681 841000 0.2415
0.8692 842000 0.2421
0.8702 843000 0.244
0.8712 844000 0.2458
0.8722 845000 0.252
0.8733 846000 0.2463
0.8743 847000 0.2492
0.8753 848000 0.2405
0.8764 849000 0.2481
0.8774 850000 0.2535
0.8784 851000 0.2379
0.8795 852000 0.2491
0.8805 853000 0.247
0.8815 854000 0.2435
0.8826 855000 0.2423
0.8836 856000 0.239
0.8846 857000 0.2439
0.8857 858000 0.24
0.8867 859000 0.2451
0.8877 860000 0.2424
0.8888 861000 0.2473
0.8898 862000 0.2402
0.8908 863000 0.2398
0.8919 864000 0.2457
0.8929 865000 0.2373
0.8939 866000 0.2426
0.8950 867000 0.2392
0.8960 868000 0.2432
0.8970 869000 0.242
0.8981 870000 0.2488
0.8991 871000 0.2429
0.9001 872000 0.2487
0.9012 873000 0.2443
0.9022 874000 0.2496
0.9032 875000 0.2497
0.9042 876000 0.245
0.9053 877000 0.233
0.9063 878000 0.2452
0.9073 879000 0.2467
0.9084 880000 0.2443
0.9094 881000 0.2477
0.9104 882000 0.249
0.9115 883000 0.2394
0.9125 884000 0.2413
0.9135 885000 0.2436
0.9146 886000 0.2451
0.9156 887000 0.2435
0.9166 888000 0.2394
0.9177 889000 0.2486
0.9187 890000 0.2502
0.9197 891000 0.2479
0.9208 892000 0.2388
0.9218 893000 0.2325
0.9228 894000 0.2395
0.9239 895000 0.2418
0.9249 896000 0.2287
0.9259 897000 0.2448
0.9270 898000 0.2418
0.9280 899000 0.2536
0.9290 900000 0.2488
0.9301 901000 0.2395
0.9311 902000 0.2347
0.9321 903000 0.2405
0.9332 904000 0.2387
0.9342 905000 0.2396
0.9352 906000 0.2456
0.9362 907000 0.2434
0.9373 908000 0.2448
0.9383 909000 0.2402
0.9393 910000 0.2363
0.9404 911000 0.2384
0.9414 912000 0.241
0.9424 913000 0.238
0.9435 914000 0.2464
0.9445 915000 0.2478
0.9455 916000 0.2452
0.9466 917000 0.2389
0.9476 918000 0.2462
0.9486 919000 0.2481
0.9497 920000 0.2444
0.9507 921000 0.2436
0.9517 922000 0.2499
0.9528 923000 0.2426
0.9538 924000 0.2472
0.9548 925000 0.2383
0.9559 926000 0.2427
0.9569 927000 0.2416
0.9579 928000 0.2415
0.9590 929000 0.2452
0.9600 930000 0.2387
0.9610 931000 0.2465
0.9621 932000 0.2452
0.9631 933000 0.2446
0.9641 934000 0.2341
0.9652 935000 0.2489
0.9662 936000 0.2437
0.9672 937000 0.2368
0.9682 938000 0.2439
0.9693 939000 0.241
0.9703 940000 0.2333
0.9713 941000 0.2456
0.9724 942000 0.2456
0.9734 943000 0.2474
0.9744 944000 0.2463
0.9755 945000 0.2488
0.9765 946000 0.2431
0.9775 947000 0.2404
0.9786 948000 0.2452
0.9796 949000 0.2397
0.9806 950000 0.2456
0.9817 951000 0.2392
0.9827 952000 0.2399
0.9837 953000 0.2416
0.9848 954000 0.2423
0.9858 955000 0.2353
0.9868 956000 0.2452
0.9879 957000 0.2404
0.9889 958000 0.2453
0.9899 959000 0.2377
0.9910 960000 0.2454
0.9920 961000 0.2412
0.9930 962000 0.2443
0.9941 963000 0.2432
0.9951 964000 0.2485
0.9961 965000 0.2412
0.9972 966000 0.249
0.9982 967000 0.2337
0.9992 968000 0.2454

Framework Versions

  • Python: 3.12.11
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.1
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.10.1
  • Datasets: 4.1.1
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CachedMultipleNegativesRankingLoss

@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
8
Safetensors
Model size
434M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Nan-Do/CP-Ranker

Finetuned
(1)
this model

Datasets used to train Nan-Do/CP-Ranker