SentenceTransformer based on Salesforce/SFR-Embedding-Code-400M_R
This is a sentence-transformers model finetuned from Salesforce/SFR-Embedding-Code-400M_R on around 1000000 Python samples from the Leetcode, Atcoder-ABC, Atcoder-ARC, Atcoder-AGC, Codechef, Codeforces datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Salesforce/SFR-Embedding-Code-400M_R
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- Leetcode
- Atcoder
- Codechef
- Codeforces
- CodeforcesPositive
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NewModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nan-Do/Ranker")
# Run inference
sentences = [
'You are given integers N, M and three integer sequences of length M: X = (X_1, X_2, \\ldots, X_M), Y = (Y_1, Y_2, \\ldots, Y_M), and Z = (Z_1, Z_2, \\ldots, Z_M). It is guaranteed that all elements of X and Y are between 1 and N, inclusive.\n\n We call a length-N sequence of non-negative integers A = (A_1, A_2, \\ldots, A_N) a good sequence if and only if it satisfies the following condition:\n\n * For every integer i with 1 \\le i \\le M, the XOR of A_{X_i} and A_{Y_i} is Z_i.\n\n Determine whether a good sequence A=(A_1,A_2,\\ldots,A_N) exists, and if it exists, find one good sequence that minimizes the sum of its elements \\displaystyle \\sum_{i=1}^N A_i.\n\n Notes on XOR For non-negative integers A and B, their XOR A \\oplus B is defined as follows:\n * In the binary representation of A \\oplus B, the digit in the place corresponding to 2^k \\,(k \\ge 0) is 1 if and only if exactly one of the digits in the same place of A and B is 1; otherwise, it is 0.\n For example, 3 \\oplus 5 = 6 (in binary: 011 \\oplus 101 = 110).\n\n Constraints\n\n * 1 \\le N \\le 2\\times 10^5\n * 0 \\le M \\le 10^5\n * 1 \\le X_i, Y_i \\le N\n * 0 \\le Z_i \\le 10^9\n * All input values are integers.\n\n Input\n\n The input is given from Standard Input in the following format:\n\n N M\n X_1 Y_1 Z_1\n X_2 Y_2 Z_2\n \\vdots\n X_M Y_M Z_M\n \n\n Output\n\n If no good sequence exists, print -1.\n\n If a good sequence exists, print one good sequence that minimizes the sum of its elements, separated by spaces.\n\n If there are multiple good sequences with the same minimum sum, printing any of them is accepted.\n\n Sample Input 1\n\n 3 2\n 1 3 4\n 1 2 3\n \n\n Sample Output 1\n\n 0 3 4\n \n\n A=(0,3,4) is a good sequence because A_1 \\oplus A_2 = 3 and A_1 \\oplus A_3 = 4.\n\n Other good sequences include A=(1,2,5) and A=(7,4,3), but A=(0,3,4) has the smallest sum among all good sequences.\n\n Sample Input 2\n\n 3 3\n 1 3 4\n 1 2 3\n 2 3 5\n \n\n Sample Output 2\n\n -1\n \n\n No good sequence exists, so print -1.\n\n Sample Input 3\n\n 5 8\n 4 2 4\n 2 3 11\n 3 4 15\n 4 5 6\n 3 2 11\n 3 3 0\n 3 1 9\n 3 4 15\n \n\n Sample Output 3\n\n 0 2 9 6 0',
'import sys\r\nsys.setrecursionlimit(10**7)\r\nfrom collections import *\r\nfrom bisect import *\r\nfrom itertools import *\r\nfrom functools import cache #関数の定義の上に @cache\u3000をつける\r\nfrom heapq import *\r\nfrom math import *\r\n\r\n\r\nN, M = map(int,input().split())\r\nG = [list() for i in range(N+1)]\r\n\r\nfor i in range(M):\r\n x,y,z = map(int,input().split())\r\n G[x].append((y,z))\r\n G[y].append((x,z))\r\n\r\n\r\n\r\nvisited = [False]*(N+1)\r\nval = [-1]*(N+1)\r\nans = [0]*(N+1)\r\n\r\ndef bfs(start):\r\n global visited,val\r\n comp = [start]\r\n q = deque([start])\r\n visited[start] = True\r\n val[start] = 0 \r\n\r\n while q:\r\n pos = q.popleft()\r\n for nxt,z in G[pos]:\r\n if visited[nxt]:\r\n if val[nxt]^val[pos] != z:\r\n print(-1)\r\n sys.exit()\r\n else:\r\n visited[nxt] = True\r\n val[nxt] = val[pos] ^ z\r\n q.append(nxt)\r\n comp.append(nxt)\r\n\r\n return comp \r\n\r\n\r\nfor i in range(1,N+1):\r\n if len(G[i]) == 0:\r\n continue\r\n\r\n if visited[i]:\r\n continue\r\n\r\n comp = bfs(i)\r\n\r\n for j in range(31):\r\n cnt = 0\r\n for ele in comp:\r\n if val[ele] & (1<<j):\r\n cnt += 1\r\n\r\n if cnt < len(comp) - cnt:\r\n for ele in comp:\r\n if val[ele] & (1<<j):\r\n ans[ele] += 1<<j\r\n else:\r\n for ele in comp:\r\n if not val[ele] & (1<<j):\r\n ans[ele] += 1<<j\r\n\r\nprint(*ans[1:])\r\n',
'\r\nimport sys\r\nsys.setrecursionlimit(10**7)\r\nfrom collections import *\r\nfrom bisect import *\r\nfrom itertools import *\r\nfrom functools import cache #関数の定義の上に @cache\u3000をつける\r\nfrom heapq import *\r\nfrom math import *\r\n\r\n\r\nN, M = map(int,input().split())\r\nG = [list() for i in range(N+1)]\r\n\r\nfor i in range(M):\r\n x,y,z = map(int,input().split())\r\n G[x].append((y,z))\r\n G[y].append((x,z))\r\n\r\nans = [0]*(N+1)\r\n\r\n\r\n\r\n\r\nvisited = [False]*(N+1)\r\n\r\n\r\nfor i in range(1,N+1):\r\n if len(G[i]) == 0:\r\n continue\r\n\r\n if visited[i]:\r\n continue\r\n\r\n answer = 0\r\n for j in range(31):\r\n tv = [False]*(N+1)\r\n tmp = [0]*(N+1)\r\n cnt1 = 0\r\n tmp[i] = 0\r\n q = [i]\r\n while q:\r\n pos = q.pop()\r\n if tv[pos]:\r\n continue\r\n tv[pos] = True\r\n for nxt,w in G[pos]:\r\n if tv[nxt]:\r\n if tmp[pos]^tmp[nxt] != (w>>j) & 1:\r\n print(-1)\r\n sys.exit()\r\n else:\r\n tmp[nxt] = ((w>>j) & 1)^tmp[pos]\r\n if tmp[nxt] == 1:\r\n cnt1 += 1\r\n q.append(nxt)\r\n\r\n tv = [False]*(N+1)\r\n tmp = [0]*(N+1)\r\n cnt2 = 1\r\n tmp[i] = 1\r\n q = [i]\r\n while q:\r\n pos = q.pop()\r\n if tv[pos]:\r\n continue\r\n tv[pos] = True\r\n for nxt,w in G[pos]:\r\n if tv[nxt]:\r\n if tmp[pos]^tmp[nxt] != (w>>j) & 1:\r\n print(-1)\r\n sys.exit()\r\n else:\r\n tmp[nxt] = ((w>>j) & 1)^tmp[pos]\r\n \r\n if tmp[nxt] == 1:\r\n cnt2 += 1\r\n q.append(nxt) \r\n \r\n \r\n if cnt1 < cnt2:\r\n ans[i] += 0\r\n else:\r\n ans[i] += 1<<j\r\n\r\n \r\n q = [i] \r\n while q:\r\n pos = q.pop()\r\n if visited[pos]:\r\n continue\r\n visited[pos] = True\r\n\r\n for nxt, w in G[pos]:\r\n if visited[nxt]:\r\n continue\r\n \r\n ans[nxt] = ans[pos]^w\r\n q.append(nxt)\r\n\r\nprint(*ans[1:])\r\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 1.0000, 1.0000],
# [1.0000, 1.0000, 1.0000],
# [1.0000, 1.0000, 1.0000]])
Training Details
Training Datasets
Leetcode
Leetcode
- Dataset: Leetcode
- Size: 79,862 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 83 tokens
- mean: 363.93 tokens
- max: 1064 tokens
- min: 34 tokens
- mean: 180.39 tokens
- max: 1290 tokens
- Samples:
anchor positive You are given two arrays of integers, fruits and baskets, each of length n, where fruits[i] represents the quantity of the i^th type of fruit, and baskets[j] represents the capacity of the j^th basket.
From left to right, place the fruits according to these rules:
Each fruit type must be placed in the leftmost available basket with a capacity greater than or equal to the quantity of that fruit type.
Each basket can hold only one type of fruit.
If a fruit type cannot be placed in any basket, it remains unplaced.
Return the number of fruit types that remain unplaced after all possible allocations are made.
Example 1:
Input: fruits = [4,2,5], baskets = [3,5,4]
Output: 1
Explanation:
fruits[0] = 4 is placed in baskets[1] = 5.
fruits[1] = 2 is placed in baskets[0] = 3.
fruits[2] = 5 cannot be placed in baskets[2] = 4.
Since one fruit type remains unplaced, we return 1.
Example 2:
Input: fruits = [3,6,1], baskets = [6,4,7]
Output: 0
Explanation:
fruits[0] = 3 i...class Solution:
def numOfUnplacedFruits(self, fruits: List[int], baskets: List[int]) -> int:
result = 0
max_val = max(baskets)
for f in fruits:
if f > max_val:
result += 1
continue
i = 0
while i < len(baskets) and baskets[i] < f:
i += 1
if i < len(baskets):
baskets.pop(i)
else:
result += 1
#print(baskets)
return resultYou are given an integer array prices representing the daily price history of a stock, where prices[i] is the stock price on the i^th day.
A smooth descent period of a stock consists of one or more contiguous days such that the price on each day is lower than the price on the preceding day by exactly 1. The first day of the period is exempted from this rule.
Return the number of smooth descent periods.
Example 1:
Input: prices = [3,2,1,4]
Output: 7
Explanation: There are 7 smooth descent periods:
[3], [2], [1], [4], [3,2], [2,1], and [3,2,1]
Note that a period with one day is a smooth descent period by the definition.
Example 2:
Input: prices = [8,6,7,7]
Output: 4
Explanation: There are 4 smooth descent periods: [8], [6], [7], and [7]
Note that [8,6] is not a smooth descent period as 8 - 6 ≠ 1.
Example 3:
Input: prices = [1]
Output: 1
Explanation: There is 1 smooth descent period: [1]
Constraints:
1 <= prices.length <= 10^5
1 <= prices[i] <= 10^5class Solution:
def getDescentPeriods(self, prices: List[int]) -> int:
dp = [0 for _ in range(len(prices))]
result = len(prices)
for i in range(1, len(prices)):
if prices[i] == prices[i-1] - 1:
dp[i] = dp[i-1] + 1
else:
dp[i] = 0
result += dp[i]
return resultYou are given a 0-indexed string array words having length n and containing 0-indexed strings.
You are allowed to perform the following operation any number of times (including zero):
Choose integers i, j, x, and y such that 0 <= i, j < n, 0 <= x < words[i].length, 0 <= y < words[j].length, and swap the characters words[i][x] and words[j][y].
Return an integer denoting the maximum number of palindromes words can contain, after performing some operations.
Note: i and j may be equal during an operation.
Example 1:
Input: words = ["abbb","ba","aa"]
Output: 3
Explanation: In this example, one way to get the maximum number of palindromes is:
Choose i = 0, j = 1, x = 0, y = 0, so we swap words[0][0] and words[1][0]. words becomes ["bbbb","aa","aa"].
All strings in words are now palindromes.
Hence, the maximum number of palindromes achievable is 3.
Example 2:
Input: words = ["abc","ab"]
Output: 2
Explanation: In this example, one way to get the maximum number of palindromes is:
...class Solution:
def maxPalindromesAfterOperations(self, words: List[str]) -> int:
word = [0]*26
ar = list()
for i in words:
ar.append(len(i))
for j in range(len(i)):
word[ord(i[j])-97] += 1
p,s = 0,0
for k in word:
p += k//2
s += k%2
ar.sort()
ans = 0
for m in ar:
if m % 2 == 0: #even case
if m//2 > p: break
else:
ans += 1
p -= m//2
else: # odd case
if s == 0: #break case
p -= 1
s += 2
s -= 1
if m//2 > p: break
else:
ans += 1
p -= m//2
return ans
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 15, "similarity_fct": "cos_sim", "mini_batch_size": 2, "gather_across_devices": false }
Atcoder
Atcoder
- Dataset: Atcoder
- Size: 478,734 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 73 tokens
- mean: 376.31 tokens
- max: 1415 tokens
- min: 15 tokens
- mean: 257.06 tokens
- max: 2912 tokens
- min: 3 tokens
- mean: 260.5 tokens
- max: 2902 tokens
- Samples:
anchor positive negative We have a permutation P = P_1, P_2, \ldots, P_N of 1, 2, \ldots, N.
You have to do the following N - 1 operations on P, each exactly once, in some order:
* Swap P_1 and P_2.
* Swap P_2 and P_3.
\vdots
* Swap P_{N-1} and P_N.
Your task is to sort P in ascending order by configuring the order of operations. If it is impossible, print -1 instead.
Constraints
* All values in input are integers.
* 2 \leq N \leq 2 \times 10^5
* P is a permutation of 1, 2, \ldots, N.
Input
Input is given from Standard Input in the following format:
N
P_1 P_2 \ldots P_N
Output
If it is impossible to sort P in ascending order by configuring the order of operations, print -1.
Otherwise, print N-1 lines to represent a sequence of operations that sorts P in ascending order. The i-th line (1 \leq i \leq N - 1) should contain j, where the i-th operation swaps P_j and P_{j + 1}.
If there are multiple such sequences of operations...def main():
import sys
input = sys.stdin.readline
N = int(input())
P = list(map(int, input().split()))
pre = 1
res = []
Q = list(range(1,N+1))
for i in range(N):
if P[i] == pre:
P[pre-1:i+1] = P[i:i+1] + P[pre-1:i]
for j in range(i,pre-1,-1):
res.append(j)
pre = i + 1
if P == Q and len(res) == N - 1:
for i in res:
print(i)
else:
print(-1)
main()def main():
import sys
input = sys.stdin.readline
N = int(input())
P = list(map(int, input().split()))
pre = 1
res = []
Q = list(range(1,N+1))
for i in range(N):
if P[i] == pre:
P[pre-1:i+1] = P[i:i+1] + P[pre-1:i]
if P == Q:
print(-1)
exit()
for j in range(i,pre-1,-1):
res.append(j)
pre = i+1
if P == Q:
for i in res:
print(i)
else:
print(-1)
main()You are given an integer sequence of length N: A=(A_1,A_2,\ldots,A_N).
You will perform the following consecutive operations just once:
* Choose an integer x (0\leq x \leq N). If x is 0, do nothing. If x is 1 or greater, replace each of A_1,A_2,\ldots,A_x with L.
* Choose an integer y (0\leq y \leq N). If y is 0, do nothing. If y is 1 or greater, replace each of A_{N},A_{N-1},\ldots,A_{N-y+1} with R.
Print the minimum possible sum of the elements of A after the operations.
Constraints
* 1 \leq N \leq 2\times 10^5
* -10^9 \leq L, R\leq 10^9
* -10^9 \leq A_i\leq 10^9
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N L R
A_1 A_2 \ldots A_N
Output
Print the answer.
Sample Input 1
5 4 3
5 5 0 6 3
Sample Output 1
14
If you choose x=2 and y=2, you will get A = (4,4,0,3,3), for the sum of 14, which is the minimum sum achievable.
Sample Input...N,L,R = map(int,input().split())
A = list(map(int,input().split()))
rui1,rui2 = [],[]
for i,v in enumerate(A):
if i == 0:
rui1.append(v)
else:
rui1.append(rui1[-1]+v)
B = A[::-1]
for i,v in enumerate(B):
if i == 0:
rui2.append(v)
else:
rui2.append(rui2[-1]+v)
#print("rui1",rui1)
#print("rui2",rui2)
rui11,rui22 = [0],[]
for i,v in enumerate(rui1):
tmp = (i+1)*L
rui11.append(rui1[i]-tmp)
for i,v in enumerate(rui2):
tmp = (i+1)*R
rui22.append(rui2[i]-tmp)
#print("rui11",rui11)
#print("rui22",rui22[::-1])
rui222 = [0]
for i,v in enumerate(rui22):
if i == 0:
rui222.append(v)
else:
rui222.append(max(v,rui222[-1]))
#print("rui222",rui222[::-1])
rui222.reverse()
tmpans = 0
tmpans11 = 10*100(-1)
for i,v in enumerate(rui11):
tmpans11 = max(tmpans11,v)
tmpans = max(tmpans11+rui222[i],tmpans)
print(sum(A)-tmpans)N,L,R = map(int,input().split())
A = list(map(int,input().split()))
rui = []
for i,v in enumerate(A):
if i == 0:
rui.append(v)
else:
rui.append(rui[-1]+v)
#print("rui",rui)
rui2 = []
for i,v in enumerate(A[::-1]):
if i == 0:
rui2.append(v)
else:
rui2.append(rui2[-1]+v)
rui11 = []
for i,v in enumerate(rui):
nex = (i+1)*L
rui11.append(v-nex)
#print("rui11",rui11)
rui22 = []
for i,v in enumerate(rui2):
nex = (i+1)*R
rui22.append(v-nex)
rui33 = []
for i,v in enumerate(rui22):
if i == 0:
rui33.append(v)
else:
rui33.append(max(rui33[-1],v))
#print("rui22",rui22[::-1])
#print("rui33",rui33[::-1])
rui33.reverse()
ans = max(rui33[0],max(rui11))
for i,v in enumerate(rui11):
if i == len(rui11)-1:
break
ans = max(ans,v+rui33[i+1])
print(sum(A)-ans) #ansSnuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print Possible; otherwise, print Impossible.
Sample Input 1
4 5
Sample Output 1
Possible
If Snuke gives nine cookies, each of the three goats can have three cookies.
Sample Input 2
1 1
Sample Output 2
Impossible
Since there are only two cookies, the three goats cannot have the same number of cookies no matte...A,B=input().split()
A=int(A)
B=int(B)
if A%3==0 or B%3==0 or (A+B)%3==0:
print("Possible")
else:
print("Impossible")x=input()
x=[int(i) for i in x.split()]
if (x[0]+x[1])%3==0 and (x[0]+x[1]) !=0 :
print("Possible")
else:
print("Impossible")
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.3 }
Codechef
Codechef
- Dataset: Codechef
- Size: 68,517 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 165 tokens
- mean: 575.4 tokens
- max: 1373 tokens
- min: 16 tokens
- mean: 213.17 tokens
- max: 2489 tokens
- min: 7 tokens
- mean: 206.87 tokens
- max: 2640 tokens
- Samples:
anchor positive negative Swapping Marks Digits
Alice scored $A$ marks and Bob scored $B$ marks in an exam. Both $A$ and $B$ are two-digit numbers that don't contain the digit $0$.
Alice wants her marks to display higher than Bob's.
For this, she can reverse her score and/or Bob's score.
Is there a way for her score to display higher than Bob's?
For example, if $A = 37$ and $B = 83$, Alice can reverse her score to make it $73$, and also reverse Bob's score to make it $38$, and now her score is higher.
Input Format:
- The first line of input will contain a single integer $T$, denoting the number of test cases.
- The first and only line of each test case contains two space-separated integers $A$ and $B$ — the marks obtained by Alice and Bob, respectively.
Output Format:
For each test case, output on a new line the answer:"Yes"
if Alice can change her score to display higher than Bob's, and"No"
otherwise (without quotes).
Each letter of the output may be printed in either uppercase or lowercase, i.e...# cook your dish here
for _ in range(int(input())):
a,b=map(int,input().split())
temp1=a
temp2=b
alice=0
bob=0
while(a!=0):
alice=alice*10+a%10
a//=10
while(b!=0):
bob=bob*10+b%10
b//=10
if(alice>bob or temp1>temp2 or temp1>bob or alice>temp2):
print("Yes")
else:
print("No")# cook your dish here
for _ in range(int(input())):
a,b=map(int,input().split())
alice=0
bob=0
while(a!=0):
alice=alice*10+a%10
a//=10
while(b!=0):
bob=bob*10+b%10
b//=10
if(alice>bob):
print("Yes")
else:
print("No")Difficulty Rating Order
Our Chef has some students in his coding class who are practicing problems. Given the difficulty of the problems that the students have solved in order, help the Chef identify if they are solving them in non-decreasing order of difficulty. Non-decreasing means that the values in an array is either increasing or remaining the same, but not decreasing. That is, the students should not solve a problem with difficulty $d_1$, and then later a problem with difficulty $d_2$, where $d_1 > d_2$.
Output “Yes” if the problems are attempted in non-decreasing order of difficulty rating and “No” if not.
Input Format:
- The first line of input will contain a single integer $T$, denoting the number of test cases. The description of the test cases follows.
- Each test case consists of $2$ lines of input.
- The first line contains a single integer $N$, the number of problems solved by the students
- The second line contains $N$ space-separate integers, the difficulty r...def rating_order(arr):
for i in range(len(arr)-1):
if (arr[i]>arr[i+1]):
return"no"
return"yes"
t=int(input())
for i in range(t):
n=int(input())
arr=list(map(int,input().split()))
print(rating_order(arr))def rating_order(arr):
for i in range(len(arr)-1):
if (arr[i]
return"yes"
return"no"
t=int(input())
for i in range(t):
n=int(input())
arr=list(map(int,input().split()))
print(rating_order(arr))Read Pages
Chef has started studying for the upcoming test. The textbook has $N$ pages in total. Chef wants to read at most $X$ pages a day for $Y$ days.
Find out whether it is possible for Chef to complete the whole book.
Input Format:
- The first line of input will contain a single integer $T$, denoting the number of test cases.
- The first and only line of each test case contains three space-separated integers $N, X,$ and $Y$ — the number of pages, the number of pages Chef can read in a day, and the number of days.
Output Format:
For each test case, output on a new line,YES
, if Chef can complete the whole book in given time, andNO
otherwise.
You may print each character of the string in uppercase or lowercase. For example,Yes
,YES
,yes
, andyES
are all considered identical.
Constraints:
- $1 \leq T \leq 1000$
- $1 \leq N \leq 100$
- $1 \leq X, Y \leq 10$
Sample 1:
Input:
4
5 2 3
10 3 3
7 7 1
3 2 1
Output:
YES
NO
YES
NO
Explanation:
Test case $1$: Chef can...# Read the number of test cases
T = int(input())
# Process each test case
for _ in range(T):
# Read N, X, Y for the current test case
N, X, Y = map(int, input().split())
# Check if Chef can complete the book
if X * Y >= N:
print("YES")
else:
print("NO")# cook your dish here
t = int(input())
for _ n range(t):
n,x,y = map(int,input().split())
if x*y>=n:
pritn("yes")
else:
print("no") - Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.3 }
Codeforces
Codeforces
- Dataset: Codeforces
- Size: 239,311 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 29 tokens
- mean: 352.67 tokens
- max: 1267 tokens
- min: 20 tokens
- mean: 124.62 tokens
- max: 1071 tokens
- min: 3 tokens
- mean: 137.77 tokens
- max: 2282 tokens
- Samples:
anchor positive negative Have you ever tried to explain to the coordinator, why it is eight hours to the contest and not a single problem has been prepared yet? Misha had. And this time he has a really strong excuse: he faced a space-time paradox! Space and time replaced each other.
The entire universe turned into an enormous clock face with three hands — hour, minute, and second. Time froze, and clocks now show the time h hours, m minutes, s seconds.
Last time Misha talked with the coordinator at t1 o'clock, so now he stands on the number t1 on the clock face. The contest should be ready by t2 o'clock. In the terms of paradox it means that Misha has to go to number t2 somehow. Note that he doesn't have to move forward only: in these circumstances time has no direction.
Clock hands are very long, and Misha cannot get round them. He also cannot step over as it leads to the collapse of space-time. That is, if hour clock points 12 and Misha stands at 11 then he cannot move to 1 along the top arc. H...h, m, s, t1, t2 = map(int, input().split())
m //= 5
s //= 5
a = [h, m, s, h + 12, m + 12, s + 12]
up = 1
dw = 1
if t1 > t2:
t1, t2 = t2, t1
t1u = t1 + 12
for i in a:
if t1 <= i and i < t2:
up = 0
if t2 <= i and i < t1u:
dw = 0
if dw + up == 0:
print('NO')
else:
print('YES')h, m, s, t1, t2 = tuple(map(int, input().split()))
t2 *= 5
t1 *= 5
s = float(s)
m = float(m + s / 12)
h = float(h * 5 + m / 12)
def dt(u, v):
if v < u:
return (60 - u) + v
return v - u
def check(t1, t2, h, m, s):
d = dt(t1, t2)
return d < dt(t1, h) and d < dt(t1, m) and d < dt(t1, s)
r = check(t1, t2, h, m, s) or check(t2, t1, h, m, s)
print("YES" if r else "NO")A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed.
To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity.
Hitagi's sequence a has a length of n. Lost elements in it are denoted by zeros. Kaiki provides another sequence b, whose length k equals the number of lost elements in a (i.e. the number of zeros). Hitagi is to replace each zero in a with an element from b so that each element in b should be used exactly once . Hitagi knows, however, that, apart from 0 , no integer occurs in a and b more than once in total.
If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In othe...# bsdk idhar kya dekhne ko aaya hai, khud kr!!!
# import math
# from itertools import *
# import random
# import calendar
# import datetime
# import webbrowser
n, m = map(int, input().split())
arr = list(map(int, input().split()))
discount = list(map(int, input().split()))
arr[arr.index(0)] = discount[0]
if m > 1 or arr != sorted(arr):
print("Yes")
else:
print("No")q = list(map(int, input().split()))
n, k = q[0], q[1]
a = list(map(int, input().split()))
b = list(map(int, input().split()))
if k > 1:
print('Yes')
else:
pos = a.index(0)
if b[0] > a[pos - 1] and b[0] < a[pos + 1]:
print('No')
else:
print('Yes')A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
Input
The first line contai...n=int(input())
sx=sy=sz=0
for i in range(n):
x, y, z = map(int, input().split())
sx+=x
sy+=y
sz+=z
i+=1
if sx == 0 and sy ==0 and sz == 0:
print('YES')
else:
print('NO')a=int(input())
for i in range(0,a):
x_i=list(input())
x=sum(int(x_i[0]) for i in range(0,a))
y=sum(int(x_i[1]) for i in range(0,a))
z=sum(int(x_i[-1]) for i in range(0,a))
if x==0 and y==0 and z==0:
print('YES')
else:
print('NO') - Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.3 }
CodeforcesPositive
CodeforcesPositive
- Dataset: CodeforcesPositive
- Size: 102,336 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 51 tokens
- mean: 676.52 tokens
- max: 1868 tokens
- min: 16 tokens
- mean: 249.47 tokens
- max: 3445 tokens
- Samples:
anchor positive We will consider the numbers $$$a$$$ and $$$b$$$ as adjacent if they differ by exactly one, that is, $$$|a-b|=1$$$.
We will consider cells of a square matrix $$$n \times n$$$ as adjacent if they have a common side, that is, for cell $$$(r, c)$$$ cells $$$(r, c-1)$$$, $$$(r, c+1)$$$, $$$(r-1, c)$$$ and $$$(r+1, c)$$$ are adjacent to it.
For a given number $$$n$$$, construct a square matrix $$$n \times n$$$ such that:
* Each integer from $$$1$$$ to $$$n^2$$$ occurs in this matrix exactly once;
* If $$$(r_1, c_1)$$$ and $$$(r_2, c_2)$$$ are adjacent cells, then the numbers written in them must not be adjacent .
Input
The first line contains one integer $$$t$$$ ($$$1 \le t \le 100$$$). Then $$$t$$$ test cases follow.
Each test case is characterized by one integer $$$n$$$ ($$$1 \le n \le 100$$$).
Output
For each test case, output:
* -1 , if the required matrix does not exist;
* the required matrix, otherwise (any such matrix if...import sys
import os.path
from collections import *
import math
import bisect
if (os.path.exists('input.txt')):
sys.stdin = open("input.txt", "r")
sys.stdout = open("output.txt", "w")
##########################################################
t = int(input())
while t:
t -= 1
n = int(input())
if n == 2:
print(-1)
else:
arr = [[0 for i in range(n)] for i in range(n)]
x = 1
for i in range(n):
if(i % 2 == 0):
for j in range(0,n,2):
arr[i][j] = x
x += 1
else:
for j in range(1,n,2):
arr[i][j] = x
x += 1
for i in range(n):
if i % 2:
for j in range(0,n,2):
arr[i][j] = x
x += 1
else:
for j in range(1,n,2):
arr[i][j] = x
x += 1
for i in arr:
...You are given an array $$$a_1, a_2, \dots, a_n$$$ consisting of $$$n$$$ distinct integers. Count the number of pairs of indices $$$(i, j)$$$ such that $$$i < j$$$ and $$$a_i \cdot a_j = i + j$$$.
Input
The first line contains one integer $$$t$$$ ($$$1 \leq t \leq 10^4$$$) — the number of test cases. Then $$$t$$$ cases follow.
The first line of each test case contains one integer $$$n$$$ ($$$2 \leq n \leq 10^5$$$) — the length of array $$$a$$$.
The second line of each test case contains $$$n$$$ space separated integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \leq a_i \leq 2 \cdot n$$$) — the array $$$a$$$. It is guaranteed that all elements are distinct .
It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
Output
For each test case, output the number of pairs of indices $$$(i, j)$$$ such that $$$i < j$$$ and $$$a_i \cdot a_j = i + j$$$.
Example
Input
3
2
3 1
...import sys
input = sys.stdin.readline
def pleasantPairs(n, arr):
res = 0
for j in range(1, n+1):
if arr[j] >= 2*j: continue
tmp = 1
while (tmp * arr[j]) < (2 * j):
i = tmp * arr[j] - j
if i > 0 and arr[i] == tmp:
res += 1
tmp += 1
return res
def main():
for t in range(int(input())):
n = int(input())
arr = [-1]
for i in input().split():
arr.append(int(i))
print(pleasantPairs(n, arr))
if name == 'main':
main()Let's call a positive integer $$$n$$$ ordinary if in the decimal notation all its digits are the same. For example, $$$1$$$, $$$2$$$ and $$$99$$$ are ordinary numbers, but $$$719$$$ and $$$2021$$$ are not ordinary numbers.
For a given number $$$n$$$, find the number of ordinary numbers among the numbers from $$$1$$$ to $$$n$$$.
Input
The first line contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$). Then $$$t$$$ test cases follow.
Each test case is characterized by one integer $$$n$$$ ($$$1 \le n \le 10^9$$$).
Output
For each test case output the number of ordinary numbers among numbers from $$$1$$$ to $$$n$$$.
Example
Input
6
1
2
3
4
5
100
Output
1
2
3
4
5
18# Ordenary numbers
t = int(input())
for _ in range(t):
n = int(input())
digit = 0
test = n
num = 0
while test:
digit += 1
test //= 10
# print(digit,n)
test = 10
while test:
num = 0
test -= 1
for i in range(digit):
num = num * 10 + test
if num <= n:
break
num = 0
num = digit * test
num +=( (digit - 1) * (9 - test))
print(num) - Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 15, "similarity_fct": "cos_sim", "mini_batch_size": 2, "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 1per_device_eval_batch_size
: 1num_train_epochs
: 1lr_scheduler_type
: constantbf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 1per_device_eval_batch_size
: 1per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: constantlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0010 | 1000 | 0.2449 |
0.0021 | 2000 | 0.2364 |
0.0031 | 3000 | 0.2453 |
0.0041 | 4000 | 0.2412 |
0.0052 | 5000 | 0.2484 |
0.0062 | 6000 | 0.2447 |
0.0072 | 7000 | 0.2475 |
0.0083 | 8000 | 0.2414 |
0.0093 | 9000 | 0.2361 |
0.0103 | 10000 | 0.2405 |
0.0114 | 11000 | 0.2419 |
0.0124 | 12000 | 0.2416 |
0.0134 | 13000 | 0.2444 |
0.0145 | 14000 | 0.2429 |
0.0155 | 15000 | 0.2412 |
0.0165 | 16000 | 0.2454 |
0.0175 | 17000 | 0.2375 |
0.0186 | 18000 | 0.2394 |
0.0196 | 19000 | 0.2407 |
0.0206 | 20000 | 0.2449 |
0.0217 | 21000 | 0.2444 |
0.0227 | 22000 | 0.2414 |
0.0237 | 23000 | 0.241 |
0.0248 | 24000 | 0.2417 |
0.0258 | 25000 | 0.2454 |
0.0268 | 26000 | 0.2412 |
0.0279 | 27000 | 0.2425 |
0.0289 | 28000 | 0.2483 |
0.0299 | 29000 | 0.2416 |
0.0310 | 30000 | 0.2397 |
0.0320 | 31000 | 0.24 |
0.0330 | 32000 | 0.2458 |
0.0341 | 33000 | 0.2479 |
0.0351 | 34000 | 0.2373 |
0.0361 | 35000 | 0.2503 |
0.0372 | 36000 | 0.2403 |
0.0382 | 37000 | 0.25 |
0.0392 | 38000 | 0.2387 |
0.0403 | 39000 | 0.2388 |
0.0413 | 40000 | 0.2475 |
0.0423 | 41000 | 0.2347 |
0.0434 | 42000 | 0.2412 |
0.0444 | 43000 | 0.2505 |
0.0454 | 44000 | 0.2422 |
0.0465 | 45000 | 0.2473 |
0.0475 | 46000 | 0.2401 |
0.0485 | 47000 | 0.241 |
0.0495 | 48000 | 0.2399 |
0.0506 | 49000 | 0.2471 |
0.0516 | 50000 | 0.2414 |
0.0526 | 51000 | 0.242 |
0.0537 | 52000 | 0.2413 |
0.0547 | 53000 | 0.2358 |
0.0557 | 54000 | 0.239 |
0.0568 | 55000 | 0.2399 |
0.0578 | 56000 | 0.2492 |
0.0588 | 57000 | 0.2402 |
0.0599 | 58000 | 0.2483 |
0.0609 | 59000 | 0.2476 |
0.0619 | 60000 | 0.2467 |
0.0630 | 61000 | 0.2393 |
0.0640 | 62000 | 0.2485 |
0.0650 | 63000 | 0.246 |
0.0661 | 64000 | 0.2447 |
0.0671 | 65000 | 0.2382 |
0.0681 | 66000 | 0.2472 |
0.0692 | 67000 | 0.2426 |
0.0702 | 68000 | 0.2425 |
0.0712 | 69000 | 0.2393 |
0.0723 | 70000 | 0.2452 |
0.0733 | 71000 | 0.2442 |
0.0743 | 72000 | 0.2418 |
0.0754 | 73000 | 0.2501 |
0.0764 | 74000 | 0.24 |
0.0774 | 75000 | 0.2448 |
0.0785 | 76000 | 0.2373 |
0.0795 | 77000 | 0.241 |
0.0805 | 78000 | 0.247 |
0.0815 | 79000 | 0.2455 |
0.0826 | 80000 | 0.2352 |
0.0836 | 81000 | 0.2404 |
0.0846 | 82000 | 0.2439 |
0.0857 | 83000 | 0.2389 |
0.0867 | 84000 | 0.2515 |
0.0877 | 85000 | 0.2425 |
0.0888 | 86000 | 0.246 |
0.0898 | 87000 | 0.2433 |
0.0908 | 88000 | 0.238 |
0.0919 | 89000 | 0.242 |
0.0929 | 90000 | 0.2428 |
0.0939 | 91000 | 0.2412 |
0.0950 | 92000 | 0.2489 |
0.0960 | 93000 | 0.2407 |
0.0970 | 94000 | 0.2471 |
0.0981 | 95000 | 0.2341 |
0.0991 | 96000 | 0.2389 |
0.1001 | 97000 | 0.2484 |
0.1012 | 98000 | 0.2498 |
0.1022 | 99000 | 0.2441 |
0.1032 | 100000 | 0.2463 |
0.1043 | 101000 | 0.2406 |
0.1053 | 102000 | 0.2377 |
0.1063 | 103000 | 0.2426 |
0.1074 | 104000 | 0.2406 |
0.1084 | 105000 | 0.2417 |
0.1094 | 106000 | 0.2519 |
0.1105 | 107000 | 0.2426 |
0.1115 | 108000 | 0.2384 |
0.1125 | 109000 | 0.2422 |
0.1135 | 110000 | 0.2475 |
0.1146 | 111000 | 0.2421 |
0.1156 | 112000 | 0.2425 |
0.1166 | 113000 | 0.2456 |
0.1177 | 114000 | 0.2407 |
0.1187 | 115000 | 0.2464 |
0.1197 | 116000 | 0.2406 |
0.1208 | 117000 | 0.2479 |
0.1218 | 118000 | 0.2403 |
0.1228 | 119000 | 0.2402 |
0.1239 | 120000 | 0.2422 |
0.1249 | 121000 | 0.2485 |
0.1259 | 122000 | 0.2432 |
0.1270 | 123000 | 0.2414 |
0.1280 | 124000 | 0.2495 |
0.1290 | 125000 | 0.2333 |
0.1301 | 126000 | 0.2493 |
0.1311 | 127000 | 0.2469 |
0.1321 | 128000 | 0.2365 |
0.1332 | 129000 | 0.2419 |
0.1342 | 130000 | 0.2438 |
0.1352 | 131000 | 0.2402 |
0.1363 | 132000 | 0.236 |
0.1373 | 133000 | 0.2431 |
0.1383 | 134000 | 0.2379 |
0.1394 | 135000 | 0.2525 |
0.1404 | 136000 | 0.2414 |
0.1414 | 137000 | 0.2361 |
0.1425 | 138000 | 0.2405 |
0.1435 | 139000 | 0.2383 |
0.1445 | 140000 | 0.2494 |
0.1455 | 141000 | 0.2425 |
0.1466 | 142000 | 0.2462 |
0.1476 | 143000 | 0.2352 |
0.1486 | 144000 | 0.2422 |
0.1497 | 145000 | 0.2458 |
0.1507 | 146000 | 0.2463 |
0.1517 | 147000 | 0.2441 |
0.1528 | 148000 | 0.2438 |
0.1538 | 149000 | 0.2444 |
0.1548 | 150000 | 0.2546 |
0.1559 | 151000 | 0.2382 |
0.1569 | 152000 | 0.2464 |
0.1579 | 153000 | 0.2369 |
0.1590 | 154000 | 0.2475 |
0.1600 | 155000 | 0.244 |
0.1610 | 156000 | 0.2459 |
0.1621 | 157000 | 0.2506 |
0.1631 | 158000 | 0.2412 |
0.1641 | 159000 | 0.2427 |
0.1652 | 160000 | 0.2391 |
0.1662 | 161000 | 0.2382 |
0.1672 | 162000 | 0.2412 |
0.1683 | 163000 | 0.241 |
0.1693 | 164000 | 0.2459 |
0.1703 | 165000 | 0.2377 |
0.1714 | 166000 | 0.2436 |
0.1724 | 167000 | 0.2429 |
0.1734 | 168000 | 0.2378 |
0.1744 | 169000 | 0.2458 |
0.1755 | 170000 | 0.2474 |
0.1765 | 171000 | 0.242 |
0.1775 | 172000 | 0.2433 |
0.1786 | 173000 | 0.2398 |
0.1796 | 174000 | 0.2509 |
0.1806 | 175000 | 0.2441 |
0.1817 | 176000 | 0.2443 |
0.1827 | 177000 | 0.2406 |
0.1837 | 178000 | 0.2476 |
0.1848 | 179000 | 0.2377 |
0.1858 | 180000 | 0.2413 |
0.1868 | 181000 | 0.2424 |
0.1879 | 182000 | 0.2471 |
0.1889 | 183000 | 0.2465 |
0.1899 | 184000 | 0.2469 |
0.1910 | 185000 | 0.2442 |
0.1920 | 186000 | 0.2375 |
0.1930 | 187000 | 0.2428 |
0.1941 | 188000 | 0.245 |
0.1951 | 189000 | 0.2454 |
0.1961 | 190000 | 0.2387 |
0.1972 | 191000 | 0.2494 |
0.1982 | 192000 | 0.239 |
0.1992 | 193000 | 0.2464 |
0.2003 | 194000 | 0.2468 |
0.2013 | 195000 | 0.2413 |
0.2023 | 196000 | 0.24 |
0.2034 | 197000 | 0.2462 |
0.2044 | 198000 | 0.2494 |
0.2054 | 199000 | 0.2436 |
0.2064 | 200000 | 0.2399 |
0.2075 | 201000 | 0.2427 |
0.2085 | 202000 | 0.2432 |
0.2095 | 203000 | 0.2388 |
0.2106 | 204000 | 0.2432 |
0.2116 | 205000 | 0.2426 |
0.2126 | 206000 | 0.2494 |
0.2137 | 207000 | 0.2457 |
0.2147 | 208000 | 0.2425 |
0.2157 | 209000 | 0.2474 |
0.2168 | 210000 | 0.2461 |
0.2178 | 211000 | 0.2464 |
0.2188 | 212000 | 0.2491 |
0.2199 | 213000 | 0.2438 |
0.2209 | 214000 | 0.2461 |
0.2219 | 215000 | 0.2398 |
0.2230 | 216000 | 0.24 |
0.2240 | 217000 | 0.2369 |
0.2250 | 218000 | 0.241 |
0.2261 | 219000 | 0.2478 |
0.2271 | 220000 | 0.2494 |
0.2281 | 221000 | 0.2485 |
0.2292 | 222000 | 0.2492 |
0.2302 | 223000 | 0.2494 |
0.2312 | 224000 | 0.2464 |
0.2323 | 225000 | 0.2436 |
0.2333 | 226000 | 0.2486 |
0.2343 | 227000 | 0.2493 |
0.2354 | 228000 | 0.2409 |
0.2364 | 229000 | 0.2453 |
0.2374 | 230000 | 0.2468 |
0.2384 | 231000 | 0.2454 |
0.2395 | 232000 | 0.2424 |
0.2405 | 233000 | 0.2437 |
0.2415 | 234000 | 0.2511 |
0.2426 | 235000 | 0.2424 |
0.2436 | 236000 | 0.2455 |
0.2446 | 237000 | 0.2405 |
0.2457 | 238000 | 0.2447 |
0.2467 | 239000 | 0.2424 |
0.2477 | 240000 | 0.2417 |
0.2488 | 241000 | 0.2429 |
0.2498 | 242000 | 0.2434 |
0.2508 | 243000 | 0.2413 |
0.2519 | 244000 | 0.2433 |
0.2529 | 245000 | 0.2401 |
0.2539 | 246000 | 0.2445 |
0.2550 | 247000 | 0.2457 |
0.2560 | 248000 | 0.2453 |
0.2570 | 249000 | 0.2439 |
0.2581 | 250000 | 0.2467 |
0.2591 | 251000 | 0.2439 |
0.2601 | 252000 | 0.2404 |
0.2612 | 253000 | 0.2426 |
0.2622 | 254000 | 0.2448 |
0.2632 | 255000 | 0.2431 |
0.2643 | 256000 | 0.234 |
0.2653 | 257000 | 0.25 |
0.2663 | 258000 | 0.2507 |
0.2674 | 259000 | 0.2501 |
0.2684 | 260000 | 0.2403 |
0.2694 | 261000 | 0.2444 |
0.2704 | 262000 | 0.2468 |
0.2715 | 263000 | 0.2407 |
0.2725 | 264000 | 0.2436 |
0.2735 | 265000 | 0.2464 |
0.2746 | 266000 | 0.2419 |
0.2756 | 267000 | 0.2493 |
0.2766 | 268000 | 0.2482 |
0.2777 | 269000 | 0.2425 |
0.2787 | 270000 | 0.243 |
0.2797 | 271000 | 0.244 |
0.2808 | 272000 | 0.2419 |
0.2818 | 273000 | 0.2448 |
0.2828 | 274000 | 0.2429 |
0.2839 | 275000 | 0.2474 |
0.2849 | 276000 | 0.2483 |
0.2859 | 277000 | 0.237 |
0.2870 | 278000 | 0.2463 |
0.2880 | 279000 | 0.2431 |
0.2890 | 280000 | 0.2469 |
0.2901 | 281000 | 0.2362 |
0.2911 | 282000 | 0.2419 |
0.2921 | 283000 | 0.2461 |
0.2932 | 284000 | 0.2426 |
0.2942 | 285000 | 0.2422 |
0.2952 | 286000 | 0.2458 |
0.2963 | 287000 | 0.249 |
0.2973 | 288000 | 0.243 |
0.2983 | 289000 | 0.2434 |
0.2994 | 290000 | 0.2413 |
0.3004 | 291000 | 0.2476 |
0.3014 | 292000 | 0.2446 |
0.3024 | 293000 | 0.2468 |
0.3035 | 294000 | 0.2411 |
0.3045 | 295000 | 0.2463 |
0.3055 | 296000 | 0.2464 |
0.3066 | 297000 | 0.2394 |
0.3076 | 298000 | 0.2503 |
0.3086 | 299000 | 0.2427 |
0.3097 | 300000 | 0.2515 |
0.3107 | 301000 | 0.2428 |
0.3117 | 302000 | 0.2478 |
0.3128 | 303000 | 0.2425 |
0.3138 | 304000 | 0.2474 |
0.3148 | 305000 | 0.2401 |
0.3159 | 306000 | 0.2455 |
0.3169 | 307000 | 0.2463 |
0.3179 | 308000 | 0.2441 |
0.3190 | 309000 | 0.2487 |
0.3200 | 310000 | 0.2385 |
0.3210 | 311000 | 0.2442 |
0.3221 | 312000 | 0.2454 |
0.3231 | 313000 | 0.2333 |
0.3241 | 314000 | 0.2393 |
0.3252 | 315000 | 0.2465 |
0.3262 | 316000 | 0.2349 |
0.3272 | 317000 | 0.2405 |
0.3283 | 318000 | 0.2404 |
0.3293 | 319000 | 0.2434 |
0.3303 | 320000 | 0.243 |
0.3314 | 321000 | 0.2409 |
0.3324 | 322000 | 0.2398 |
0.3334 | 323000 | 0.2491 |
0.3344 | 324000 | 0.246 |
0.3355 | 325000 | 0.2449 |
0.3365 | 326000 | 0.246 |
0.3375 | 327000 | 0.2445 |
0.3386 | 328000 | 0.2484 |
0.3396 | 329000 | 0.2379 |
0.3406 | 330000 | 0.2439 |
0.3417 | 331000 | 0.2385 |
0.3427 | 332000 | 0.2444 |
0.3437 | 333000 | 0.2451 |
0.3448 | 334000 | 0.243 |
0.3458 | 335000 | 0.2455 |
0.3468 | 336000 | 0.2413 |
0.3479 | 337000 | 0.2436 |
0.3489 | 338000 | 0.2387 |
0.3499 | 339000 | 0.2443 |
0.3510 | 340000 | 0.2396 |
0.3520 | 341000 | 0.2385 |
0.3530 | 342000 | 0.2435 |
0.3541 | 343000 | 0.2384 |
0.3551 | 344000 | 0.2386 |
0.3561 | 345000 | 0.2422 |
0.3572 | 346000 | 0.2477 |
0.3582 | 347000 | 0.2417 |
0.3592 | 348000 | 0.2466 |
0.3603 | 349000 | 0.2456 |
0.3613 | 350000 | 0.2446 |
0.3623 | 351000 | 0.2375 |
0.3634 | 352000 | 0.2358 |
0.3644 | 353000 | 0.2373 |
0.3654 | 354000 | 0.2445 |
0.3664 | 355000 | 0.2378 |
0.3675 | 356000 | 0.2459 |
0.3685 | 357000 | 0.2476 |
0.3695 | 358000 | 0.2437 |
0.3706 | 359000 | 0.242 |
0.3716 | 360000 | 0.2404 |
0.3726 | 361000 | 0.2473 |
0.3737 | 362000 | 0.2461 |
0.3747 | 363000 | 0.2412 |
0.3757 | 364000 | 0.24 |
0.3768 | 365000 | 0.2426 |
0.3778 | 366000 | 0.242 |
0.3788 | 367000 | 0.2428 |
0.3799 | 368000 | 0.2446 |
0.3809 | 369000 | 0.2453 |
0.3819 | 370000 | 0.2441 |
0.3830 | 371000 | 0.2529 |
0.3840 | 372000 | 0.246 |
0.3850 | 373000 | 0.2396 |
0.3861 | 374000 | 0.2422 |
0.3871 | 375000 | 0.2469 |
0.3881 | 376000 | 0.2436 |
0.3892 | 377000 | 0.2422 |
0.3902 | 378000 | 0.2416 |
0.3912 | 379000 | 0.2501 |
0.3923 | 380000 | 0.2443 |
0.3933 | 381000 | 0.2381 |
0.3943 | 382000 | 0.2392 |
0.3954 | 383000 | 0.2422 |
0.3964 | 384000 | 0.2496 |
0.3974 | 385000 | 0.243 |
0.3984 | 386000 | 0.2431 |
0.3995 | 387000 | 0.2426 |
0.4005 | 388000 | 0.2441 |
0.4015 | 389000 | 0.2434 |
0.4026 | 390000 | 0.2423 |
0.4036 | 391000 | 0.2444 |
0.4046 | 392000 | 0.2387 |
0.4057 | 393000 | 0.2386 |
0.4067 | 394000 | 0.2387 |
0.4077 | 395000 | 0.2467 |
0.4088 | 396000 | 0.2413 |
0.4098 | 397000 | 0.2471 |
0.4108 | 398000 | 0.2435 |
0.4119 | 399000 | 0.2424 |
0.4129 | 400000 | 0.2446 |
0.4139 | 401000 | 0.243 |
0.4150 | 402000 | 0.2436 |
0.4160 | 403000 | 0.2384 |
0.4170 | 404000 | 0.2404 |
0.4181 | 405000 | 0.2375 |
0.4191 | 406000 | 0.2455 |
0.4201 | 407000 | 0.2379 |
0.4212 | 408000 | 0.2487 |
0.4222 | 409000 | 0.244 |
0.4232 | 410000 | 0.2368 |
0.4243 | 411000 | 0.2415 |
0.4253 | 412000 | 0.2505 |
0.4263 | 413000 | 0.239 |
0.4274 | 414000 | 0.2431 |
0.4284 | 415000 | 0.2385 |
0.4294 | 416000 | 0.2515 |
0.4304 | 417000 | 0.2458 |
0.4315 | 418000 | 0.2433 |
0.4325 | 419000 | 0.239 |
0.4335 | 420000 | 0.2461 |
0.4346 | 421000 | 0.2474 |
0.4356 | 422000 | 0.2419 |
0.4366 | 423000 | 0.2451 |
0.4377 | 424000 | 0.2553 |
0.4387 | 425000 | 0.2486 |
0.4397 | 426000 | 0.2403 |
0.4408 | 427000 | 0.2429 |
0.4418 | 428000 | 0.2464 |
0.4428 | 429000 | 0.243 |
0.4439 | 430000 | 0.2446 |
0.4449 | 431000 | 0.2419 |
0.4459 | 432000 | 0.2407 |
0.4470 | 433000 | 0.2425 |
0.4480 | 434000 | 0.2429 |
0.4490 | 435000 | 0.2424 |
0.4501 | 436000 | 0.2373 |
0.4511 | 437000 | 0.2493 |
0.4521 | 438000 | 0.2403 |
0.4532 | 439000 | 0.2424 |
0.4542 | 440000 | 0.2501 |
0.4552 | 441000 | 0.2414 |
0.4563 | 442000 | 0.2472 |
0.4573 | 443000 | 0.2367 |
0.4583 | 444000 | 0.2481 |
0.4594 | 445000 | 0.2439 |
0.4604 | 446000 | 0.2466 |
0.4614 | 447000 | 0.241 |
0.4624 | 448000 | 0.2425 |
0.4635 | 449000 | 0.2367 |
0.4645 | 450000 | 0.2421 |
0.4655 | 451000 | 0.2386 |
0.4666 | 452000 | 0.2357 |
0.4676 | 453000 | 0.2464 |
0.4686 | 454000 | 0.2422 |
0.4697 | 455000 | 0.2443 |
0.4707 | 456000 | 0.2414 |
0.4717 | 457000 | 0.2483 |
0.4728 | 458000 | 0.2423 |
0.4738 | 459000 | 0.2386 |
0.4748 | 460000 | 0.2445 |
0.4759 | 461000 | 0.2453 |
0.4769 | 462000 | 0.2363 |
0.4779 | 463000 | 0.2432 |
0.4790 | 464000 | 0.2455 |
0.4800 | 465000 | 0.2376 |
0.4810 | 466000 | 0.2441 |
0.4821 | 467000 | 0.2466 |
0.4831 | 468000 | 0.2379 |
0.4841 | 469000 | 0.2429 |
0.4852 | 470000 | 0.2454 |
0.4862 | 471000 | 0.2439 |
0.4872 | 472000 | 0.2466 |
0.4883 | 473000 | 0.2459 |
0.4893 | 474000 | 0.2431 |
0.4903 | 475000 | 0.2429 |
0.4913 | 476000 | 0.2421 |
0.4924 | 477000 | 0.2405 |
0.4934 | 478000 | 0.2429 |
0.4944 | 479000 | 0.2435 |
0.4955 | 480000 | 0.2422 |
0.4965 | 481000 | 0.2419 |
0.4975 | 482000 | 0.2467 |
0.4986 | 483000 | 0.2409 |
0.4996 | 484000 | 0.2424 |
0.5006 | 485000 | 0.2452 |
0.5017 | 486000 | 0.2416 |
0.5027 | 487000 | 0.2455 |
0.5037 | 488000 | 0.2467 |
0.5048 | 489000 | 0.2467 |
0.5058 | 490000 | 0.243 |
0.5068 | 491000 | 0.2397 |
0.5079 | 492000 | 0.2385 |
0.5089 | 493000 | 0.2425 |
0.5099 | 494000 | 0.2501 |
0.5110 | 495000 | 0.2433 |
0.5120 | 496000 | 0.2461 |
0.5130 | 497000 | 0.2381 |
0.5141 | 498000 | 0.2464 |
0.5151 | 499000 | 0.248 |
0.5161 | 500000 | 0.2478 |
0.5172 | 501000 | 0.2386 |
0.5182 | 502000 | 0.2427 |
0.5192 | 503000 | 0.2484 |
0.5203 | 504000 | 0.2403 |
0.5213 | 505000 | 0.2398 |
0.5223 | 506000 | 0.2468 |
0.5233 | 507000 | 0.2444 |
0.5244 | 508000 | 0.2445 |
0.5254 | 509000 | 0.2446 |
0.5264 | 510000 | 0.2463 |
0.5275 | 511000 | 0.2495 |
0.5285 | 512000 | 0.2471 |
0.5295 | 513000 | 0.2402 |
0.5306 | 514000 | 0.2404 |
0.5316 | 515000 | 0.2442 |
0.5326 | 516000 | 0.2398 |
0.5337 | 517000 | 0.2377 |
0.5347 | 518000 | 0.2463 |
0.5357 | 519000 | 0.2418 |
0.5368 | 520000 | 0.2532 |
0.5378 | 521000 | 0.2462 |
0.5388 | 522000 | 0.2419 |
0.5399 | 523000 | 0.246 |
0.5409 | 524000 | 0.2365 |
0.5419 | 525000 | 0.2419 |
0.5430 | 526000 | 0.248 |
0.5440 | 527000 | 0.2464 |
0.5450 | 528000 | 0.2395 |
0.5461 | 529000 | 0.2405 |
0.5471 | 530000 | 0.24 |
0.5481 | 531000 | 0.2388 |
0.5492 | 532000 | 0.2418 |
0.5502 | 533000 | 0.2473 |
0.5512 | 534000 | 0.2448 |
0.5523 | 535000 | 0.2458 |
0.5533 | 536000 | 0.2447 |
0.5543 | 537000 | 0.2364 |
0.5553 | 538000 | 0.2483 |
0.5564 | 539000 | 0.2365 |
0.5574 | 540000 | 0.2463 |
0.5584 | 541000 | 0.2437 |
0.5595 | 542000 | 0.2387 |
0.5605 | 543000 | 0.2411 |
0.5615 | 544000 | 0.2451 |
0.5626 | 545000 | 0.2486 |
0.5636 | 546000 | 0.2374 |
0.5646 | 547000 | 0.2384 |
0.5657 | 548000 | 0.2428 |
0.5667 | 549000 | 0.2443 |
0.5677 | 550000 | 0.2404 |
0.5688 | 551000 | 0.2391 |
0.5698 | 552000 | 0.2449 |
0.5708 | 553000 | 0.2484 |
0.5719 | 554000 | 0.2422 |
0.5729 | 555000 | 0.2523 |
0.5739 | 556000 | 0.2423 |
0.5750 | 557000 | 0.2435 |
0.5760 | 558000 | 0.2373 |
0.5770 | 559000 | 0.2481 |
0.5781 | 560000 | 0.2407 |
0.5791 | 561000 | 0.2431 |
0.5801 | 562000 | 0.243 |
0.5812 | 563000 | 0.2457 |
0.5822 | 564000 | 0.2459 |
0.5832 | 565000 | 0.2461 |
0.5843 | 566000 | 0.2392 |
0.5853 | 567000 | 0.2416 |
0.5863 | 568000 | 0.245 |
0.5873 | 569000 | 0.2437 |
0.5884 | 570000 | 0.2438 |
0.5894 | 571000 | 0.2416 |
0.5904 | 572000 | 0.249 |
0.5915 | 573000 | 0.2409 |
0.5925 | 574000 | 0.2427 |
0.5935 | 575000 | 0.2473 |
0.5946 | 576000 | 0.2429 |
0.5956 | 577000 | 0.2429 |
0.5966 | 578000 | 0.242 |
0.5977 | 579000 | 0.2418 |
0.5987 | 580000 | 0.2483 |
0.5997 | 581000 | 0.2434 |
0.6008 | 582000 | 0.241 |
0.6018 | 583000 | 0.2393 |
0.6028 | 584000 | 0.2379 |
0.6039 | 585000 | 0.2378 |
0.6049 | 586000 | 0.2427 |
0.6059 | 587000 | 0.2417 |
0.6070 | 588000 | 0.2446 |
0.6080 | 589000 | 0.2469 |
0.6090 | 590000 | 0.2478 |
0.6101 | 591000 | 0.2489 |
0.6111 | 592000 | 0.2415 |
0.6121 | 593000 | 0.2446 |
0.6132 | 594000 | 0.2389 |
0.6142 | 595000 | 0.2381 |
0.6152 | 596000 | 0.2409 |
0.6163 | 597000 | 0.2538 |
0.6173 | 598000 | 0.2408 |
0.6183 | 599000 | 0.2436 |
0.6193 | 600000 | 0.2448 |
0.6204 | 601000 | 0.2393 |
0.6214 | 602000 | 0.2415 |
0.6224 | 603000 | 0.2404 |
0.6235 | 604000 | 0.2444 |
0.6245 | 605000 | 0.2403 |
0.6255 | 606000 | 0.2357 |
0.6266 | 607000 | 0.2502 |
0.6276 | 608000 | 0.2425 |
0.6286 | 609000 | 0.2408 |
0.6297 | 610000 | 0.2437 |
0.6307 | 611000 | 0.2416 |
0.6317 | 612000 | 0.2393 |
0.6328 | 613000 | 0.2419 |
0.6338 | 614000 | 0.2419 |
0.6348 | 615000 | 0.2395 |
0.6359 | 616000 | 0.2459 |
0.6369 | 617000 | 0.2458 |
0.6379 | 618000 | 0.2432 |
0.6390 | 619000 | 0.2474 |
0.6400 | 620000 | 0.235 |
0.6410 | 621000 | 0.2468 |
0.6421 | 622000 | 0.2397 |
0.6431 | 623000 | 0.2363 |
0.6441 | 624000 | 0.2442 |
0.6452 | 625000 | 0.2487 |
0.6462 | 626000 | 0.245 |
0.6472 | 627000 | 0.2461 |
0.6483 | 628000 | 0.2396 |
0.6493 | 629000 | 0.2429 |
0.6503 | 630000 | 0.2448 |
0.6513 | 631000 | 0.2431 |
0.6524 | 632000 | 0.2502 |
0.6534 | 633000 | 0.2525 |
0.6544 | 634000 | 0.2407 |
0.6555 | 635000 | 0.2448 |
0.6565 | 636000 | 0.2442 |
0.6575 | 637000 | 0.2417 |
0.6586 | 638000 | 0.2486 |
0.6596 | 639000 | 0.2507 |
0.6606 | 640000 | 0.2398 |
0.6617 | 641000 | 0.2471 |
0.6627 | 642000 | 0.2435 |
0.6637 | 643000 | 0.2437 |
0.6648 | 644000 | 0.2446 |
0.6658 | 645000 | 0.2467 |
0.6668 | 646000 | 0.2467 |
0.6679 | 647000 | 0.2364 |
0.6689 | 648000 | 0.2418 |
0.6699 | 649000 | 0.245 |
0.6710 | 650000 | 0.243 |
0.6720 | 651000 | 0.2387 |
0.6730 | 652000 | 0.2424 |
0.6741 | 653000 | 0.2365 |
0.6751 | 654000 | 0.2366 |
0.6761 | 655000 | 0.2425 |
0.6772 | 656000 | 0.2369 |
0.6782 | 657000 | 0.239 |
0.6792 | 658000 | 0.2447 |
0.6803 | 659000 | 0.2417 |
0.6813 | 660000 | 0.2457 |
0.6823 | 661000 | 0.2452 |
0.6833 | 662000 | 0.242 |
0.6844 | 663000 | 0.255 |
0.6854 | 664000 | 0.2451 |
0.6864 | 665000 | 0.2375 |
0.6875 | 666000 | 0.2441 |
0.6885 | 667000 | 0.2509 |
0.6895 | 668000 | 0.2415 |
0.6906 | 669000 | 0.246 |
0.6916 | 670000 | 0.24 |
0.6926 | 671000 | 0.2372 |
0.6937 | 672000 | 0.2504 |
0.6947 | 673000 | 0.2443 |
0.6957 | 674000 | 0.2444 |
0.6968 | 675000 | 0.2448 |
0.6978 | 676000 | 0.2411 |
0.6988 | 677000 | 0.2437 |
0.6999 | 678000 | 0.2432 |
0.7009 | 679000 | 0.2475 |
0.7019 | 680000 | 0.2352 |
0.7030 | 681000 | 0.246 |
0.7040 | 682000 | 0.2451 |
0.7050 | 683000 | 0.2406 |
0.7061 | 684000 | 0.2428 |
0.7071 | 685000 | 0.2433 |
0.7081 | 686000 | 0.2415 |
0.7092 | 687000 | 0.2479 |
0.7102 | 688000 | 0.2405 |
0.7112 | 689000 | 0.2379 |
0.7123 | 690000 | 0.2389 |
0.7133 | 691000 | 0.2414 |
0.7143 | 692000 | 0.2398 |
0.7153 | 693000 | 0.2369 |
0.7164 | 694000 | 0.2465 |
0.7174 | 695000 | 0.2426 |
0.7184 | 696000 | 0.2417 |
0.7195 | 697000 | 0.2422 |
0.7205 | 698000 | 0.2386 |
0.7215 | 699000 | 0.2412 |
0.7226 | 700000 | 0.2508 |
0.7236 | 701000 | 0.241 |
0.7246 | 702000 | 0.2427 |
0.7257 | 703000 | 0.2345 |
0.7267 | 704000 | 0.2465 |
0.7277 | 705000 | 0.2483 |
0.7288 | 706000 | 0.2395 |
0.7298 | 707000 | 0.2435 |
0.7308 | 708000 | 0.2434 |
0.7319 | 709000 | 0.2416 |
0.7329 | 710000 | 0.2421 |
0.7339 | 711000 | 0.2412 |
0.7350 | 712000 | 0.2389 |
0.7360 | 713000 | 0.2452 |
0.7370 | 714000 | 0.2428 |
0.7381 | 715000 | 0.2422 |
0.7391 | 716000 | 0.2364 |
0.7401 | 717000 | 0.2439 |
0.7412 | 718000 | 0.2435 |
0.7422 | 719000 | 0.2401 |
0.7432 | 720000 | 0.2441 |
0.7443 | 721000 | 0.2482 |
0.7453 | 722000 | 0.2417 |
0.7463 | 723000 | 0.2474 |
0.7473 | 724000 | 0.2451 |
0.7484 | 725000 | 0.2387 |
0.7494 | 726000 | 0.2422 |
0.7504 | 727000 | 0.2453 |
0.7515 | 728000 | 0.2437 |
0.7525 | 729000 | 0.2481 |
0.7535 | 730000 | 0.2451 |
0.7546 | 731000 | 0.2426 |
0.7556 | 732000 | 0.242 |
0.7566 | 733000 | 0.245 |
0.7577 | 734000 | 0.2425 |
0.7587 | 735000 | 0.2413 |
0.7597 | 736000 | 0.2501 |
0.7608 | 737000 | 0.2441 |
0.7618 | 738000 | 0.2442 |
0.7628 | 739000 | 0.2468 |
0.7639 | 740000 | 0.2419 |
0.7649 | 741000 | 0.2409 |
0.7659 | 742000 | 0.2423 |
0.7670 | 743000 | 0.2493 |
0.7680 | 744000 | 0.2469 |
0.7690 | 745000 | 0.249 |
0.7701 | 746000 | 0.2423 |
0.7711 | 747000 | 0.2414 |
0.7721 | 748000 | 0.2408 |
0.7732 | 749000 | 0.2407 |
0.7742 | 750000 | 0.2477 |
0.7752 | 751000 | 0.2403 |
0.7763 | 752000 | 0.2504 |
0.7773 | 753000 | 0.2358 |
0.7783 | 754000 | 0.2465 |
0.7793 | 755000 | 0.2432 |
0.7804 | 756000 | 0.2407 |
0.7814 | 757000 | 0.2407 |
0.7824 | 758000 | 0.2407 |
0.7835 | 759000 | 0.2441 |
0.7845 | 760000 | 0.2426 |
0.7855 | 761000 | 0.2395 |
0.7866 | 762000 | 0.2428 |
0.7876 | 763000 | 0.2403 |
0.7886 | 764000 | 0.2394 |
0.7897 | 765000 | 0.2424 |
0.7907 | 766000 | 0.2489 |
0.7917 | 767000 | 0.2417 |
0.7928 | 768000 | 0.2423 |
0.7938 | 769000 | 0.2366 |
0.7948 | 770000 | 0.2508 |
0.7959 | 771000 | 0.2451 |
0.7969 | 772000 | 0.2454 |
0.7979 | 773000 | 0.2419 |
0.7990 | 774000 | 0.2498 |
0.8000 | 775000 | 0.2406 |
0.8010 | 776000 | 0.2344 |
0.8021 | 777000 | 0.2518 |
0.8031 | 778000 | 0.249 |
0.8041 | 779000 | 0.2383 |
0.8052 | 780000 | 0.2442 |
0.8062 | 781000 | 0.243 |
0.8072 | 782000 | 0.2422 |
0.8082 | 783000 | 0.2476 |
0.8093 | 784000 | 0.2417 |
0.8103 | 785000 | 0.2417 |
0.8113 | 786000 | 0.2445 |
0.8124 | 787000 | 0.2414 |
0.8134 | 788000 | 0.2517 |
0.8144 | 789000 | 0.2431 |
0.8155 | 790000 | 0.2467 |
0.8165 | 791000 | 0.2483 |
0.8175 | 792000 | 0.2397 |
0.8186 | 793000 | 0.2467 |
0.8196 | 794000 | 0.2438 |
0.8206 | 795000 | 0.247 |
0.8217 | 796000 | 0.2446 |
0.8227 | 797000 | 0.2372 |
0.8237 | 798000 | 0.2362 |
0.8248 | 799000 | 0.2421 |
0.8258 | 800000 | 0.2404 |
0.8268 | 801000 | 0.2376 |
0.8279 | 802000 | 0.2406 |
0.8289 | 803000 | 0.2497 |
0.8299 | 804000 | 0.2475 |
0.8310 | 805000 | 0.2418 |
0.8320 | 806000 | 0.2379 |
0.8330 | 807000 | 0.2431 |
0.8341 | 808000 | 0.2472 |
0.8351 | 809000 | 0.2485 |
0.8361 | 810000 | 0.2498 |
0.8372 | 811000 | 0.2424 |
0.8382 | 812000 | 0.2434 |
0.8392 | 813000 | 0.2452 |
0.8402 | 814000 | 0.2396 |
0.8413 | 815000 | 0.2472 |
0.8423 | 816000 | 0.2529 |
0.8433 | 817000 | 0.2462 |
0.8444 | 818000 | 0.2436 |
0.8454 | 819000 | 0.2435 |
0.8464 | 820000 | 0.2417 |
0.8475 | 821000 | 0.2453 |
0.8485 | 822000 | 0.2455 |
0.8495 | 823000 | 0.2374 |
0.8506 | 824000 | 0.2416 |
0.8516 | 825000 | 0.2432 |
0.8526 | 826000 | 0.2459 |
0.8537 | 827000 | 0.2407 |
0.8547 | 828000 | 0.247 |
0.8557 | 829000 | 0.2399 |
0.8568 | 830000 | 0.2346 |
0.8578 | 831000 | 0.2446 |
0.8588 | 832000 | 0.2399 |
0.8599 | 833000 | 0.2433 |
0.8609 | 834000 | 0.2468 |
0.8619 | 835000 | 0.2464 |
0.8630 | 836000 | 0.2505 |
0.8640 | 837000 | 0.2437 |
0.8650 | 838000 | 0.2419 |
0.8661 | 839000 | 0.2449 |
0.8671 | 840000 | 0.2504 |
0.8681 | 841000 | 0.2415 |
0.8692 | 842000 | 0.2421 |
0.8702 | 843000 | 0.244 |
0.8712 | 844000 | 0.2458 |
0.8722 | 845000 | 0.252 |
0.8733 | 846000 | 0.2463 |
0.8743 | 847000 | 0.2492 |
0.8753 | 848000 | 0.2405 |
0.8764 | 849000 | 0.2481 |
0.8774 | 850000 | 0.2535 |
0.8784 | 851000 | 0.2379 |
0.8795 | 852000 | 0.2491 |
0.8805 | 853000 | 0.247 |
0.8815 | 854000 | 0.2435 |
0.8826 | 855000 | 0.2423 |
0.8836 | 856000 | 0.239 |
0.8846 | 857000 | 0.2439 |
0.8857 | 858000 | 0.24 |
0.8867 | 859000 | 0.2451 |
0.8877 | 860000 | 0.2424 |
0.8888 | 861000 | 0.2473 |
0.8898 | 862000 | 0.2402 |
0.8908 | 863000 | 0.2398 |
0.8919 | 864000 | 0.2457 |
0.8929 | 865000 | 0.2373 |
0.8939 | 866000 | 0.2426 |
0.8950 | 867000 | 0.2392 |
0.8960 | 868000 | 0.2432 |
0.8970 | 869000 | 0.242 |
0.8981 | 870000 | 0.2488 |
0.8991 | 871000 | 0.2429 |
0.9001 | 872000 | 0.2487 |
0.9012 | 873000 | 0.2443 |
0.9022 | 874000 | 0.2496 |
0.9032 | 875000 | 0.2497 |
0.9042 | 876000 | 0.245 |
0.9053 | 877000 | 0.233 |
0.9063 | 878000 | 0.2452 |
0.9073 | 879000 | 0.2467 |
0.9084 | 880000 | 0.2443 |
0.9094 | 881000 | 0.2477 |
0.9104 | 882000 | 0.249 |
0.9115 | 883000 | 0.2394 |
0.9125 | 884000 | 0.2413 |
0.9135 | 885000 | 0.2436 |
0.9146 | 886000 | 0.2451 |
0.9156 | 887000 | 0.2435 |
0.9166 | 888000 | 0.2394 |
0.9177 | 889000 | 0.2486 |
0.9187 | 890000 | 0.2502 |
0.9197 | 891000 | 0.2479 |
0.9208 | 892000 | 0.2388 |
0.9218 | 893000 | 0.2325 |
0.9228 | 894000 | 0.2395 |
0.9239 | 895000 | 0.2418 |
0.9249 | 896000 | 0.2287 |
0.9259 | 897000 | 0.2448 |
0.9270 | 898000 | 0.2418 |
0.9280 | 899000 | 0.2536 |
0.9290 | 900000 | 0.2488 |
0.9301 | 901000 | 0.2395 |
0.9311 | 902000 | 0.2347 |
0.9321 | 903000 | 0.2405 |
0.9332 | 904000 | 0.2387 |
0.9342 | 905000 | 0.2396 |
0.9352 | 906000 | 0.2456 |
0.9362 | 907000 | 0.2434 |
0.9373 | 908000 | 0.2448 |
0.9383 | 909000 | 0.2402 |
0.9393 | 910000 | 0.2363 |
0.9404 | 911000 | 0.2384 |
0.9414 | 912000 | 0.241 |
0.9424 | 913000 | 0.238 |
0.9435 | 914000 | 0.2464 |
0.9445 | 915000 | 0.2478 |
0.9455 | 916000 | 0.2452 |
0.9466 | 917000 | 0.2389 |
0.9476 | 918000 | 0.2462 |
0.9486 | 919000 | 0.2481 |
0.9497 | 920000 | 0.2444 |
0.9507 | 921000 | 0.2436 |
0.9517 | 922000 | 0.2499 |
0.9528 | 923000 | 0.2426 |
0.9538 | 924000 | 0.2472 |
0.9548 | 925000 | 0.2383 |
0.9559 | 926000 | 0.2427 |
0.9569 | 927000 | 0.2416 |
0.9579 | 928000 | 0.2415 |
0.9590 | 929000 | 0.2452 |
0.9600 | 930000 | 0.2387 |
0.9610 | 931000 | 0.2465 |
0.9621 | 932000 | 0.2452 |
0.9631 | 933000 | 0.2446 |
0.9641 | 934000 | 0.2341 |
0.9652 | 935000 | 0.2489 |
0.9662 | 936000 | 0.2437 |
0.9672 | 937000 | 0.2368 |
0.9682 | 938000 | 0.2439 |
0.9693 | 939000 | 0.241 |
0.9703 | 940000 | 0.2333 |
0.9713 | 941000 | 0.2456 |
0.9724 | 942000 | 0.2456 |
0.9734 | 943000 | 0.2474 |
0.9744 | 944000 | 0.2463 |
0.9755 | 945000 | 0.2488 |
0.9765 | 946000 | 0.2431 |
0.9775 | 947000 | 0.2404 |
0.9786 | 948000 | 0.2452 |
0.9796 | 949000 | 0.2397 |
0.9806 | 950000 | 0.2456 |
0.9817 | 951000 | 0.2392 |
0.9827 | 952000 | 0.2399 |
0.9837 | 953000 | 0.2416 |
0.9848 | 954000 | 0.2423 |
0.9858 | 955000 | 0.2353 |
0.9868 | 956000 | 0.2452 |
0.9879 | 957000 | 0.2404 |
0.9889 | 958000 | 0.2453 |
0.9899 | 959000 | 0.2377 |
0.9910 | 960000 | 0.2454 |
0.9920 | 961000 | 0.2412 |
0.9930 | 962000 | 0.2443 |
0.9941 | 963000 | 0.2432 |
0.9951 | 964000 | 0.2485 |
0.9961 | 965000 | 0.2412 |
0.9972 | 966000 | 0.249 |
0.9982 | 967000 | 0.2337 |
0.9992 | 968000 | 0.2454 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 8
Model tree for Nan-Do/CP-Ranker
Base model
Salesforce/SFR-Embedding-Code-400M_R