metadata
library_name: transformers
license: apache-2.0
datasets:
- oscar-corpus/OSCAR-2301
language:
- th
base_model:
- EleutherAI/pythia-2.8b-deduped
pipeline_tag: text-generation
This model is currently in the training stage and may produce hallucinations
Example Use
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "Naphon/pythia-2.8b-thai-base-v1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
text = "รองศาสตราจารย์ ดร.สุวิทย์ แซ่เตีย อธิการบดีมหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, temperature=0.9)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))