SentenceTransformer based on google/embeddinggemma-300m
This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/embeddinggemma-300m
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Neelkumar/my-embedding-gemma-5424")
# Run inference
queries = [
"How can I find information about past Access to Information requests?",
]
documents = [
'Search the summaries of completed Access to Information (ATI) requests to find information about ATI requests made to the Government of Canada after January 2020.',
'What are the eligibility requirements for the Canada Pension Plan?',
'This house style was a popular design from 1890-1900.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.9569, 0.1398, -0.0558]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,424 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 15.8 tokens
- max: 35 tokens
- min: 8 tokens
- mean: 32.04 tokens
- max: 130 tokens
- min: 11 tokens
- mean: 15.01 tokens
- max: 42 tokens
- Samples:
anchor positive negative Quelles mesures les propriétaires peuvent-ils prendre pour éliminer les punaises de lit?
Les propriétaires peuvent instaurer différentes mesures pour prévenir et éliminer les punaises des lits.
Quelles sont les conditions pour obtenir une assurance automobile?
Comment les pages web du gouvernement de la Saskatchewan sont-elles traduites en français?
Un certain nombre de pages sur le site web du gouvernement de la Saskatchewan ont été traduites professionnellement en français.
Quelles sont les exigences pour obtenir un permis de conduire?
How long do plant breeders' rights last in Canada?
Plant breeders receive legal protection for up to 25 years for trees and vines, and 20 years for other plant varieties.
What are the requirements for importing a pet into Canada?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 4learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1prompts
: task: sentence similarity | query:
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: task: sentence similarity | query:batch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0147 | 20 | 0.1138 |
0.0295 | 40 | 0.0682 |
0.0442 | 60 | 0.0099 |
0.0590 | 80 | 0.0212 |
0.0737 | 100 | 0.0447 |
0.0885 | 120 | 0.0047 |
0.1032 | 140 | 0.0057 |
0.1180 | 160 | 0.0025 |
0.1327 | 180 | 0.0036 |
0.1475 | 200 | 0.0062 |
0.1622 | 220 | 0.0285 |
0.1770 | 240 | 0.0069 |
0.1917 | 260 | 0.0008 |
0.2065 | 280 | 0.0104 |
0.2212 | 300 | 0.0019 |
0.2360 | 320 | 0.0576 |
0.2507 | 340 | 0.0088 |
0.2655 | 360 | 0.0046 |
0.2802 | 380 | 0.0014 |
0.2950 | 400 | 0.001 |
0.3097 | 420 | 0.0184 |
0.3245 | 440 | 0.0016 |
0.3392 | 460 | 0.0019 |
0.3540 | 480 | 0.0192 |
0.3687 | 500 | 0.0392 |
0.3835 | 520 | 0.0051 |
0.3982 | 540 | 0.0023 |
0.4130 | 560 | 0.0119 |
0.4277 | 580 | 0.0022 |
0.4425 | 600 | 0.0046 |
0.4572 | 620 | 0.0041 |
0.4720 | 640 | 0.0066 |
0.4867 | 660 | 0.0115 |
0.5015 | 680 | 0.0112 |
0.5162 | 700 | 0.0327 |
0.5310 | 720 | 0.0009 |
0.5457 | 740 | 0.0031 |
0.5605 | 760 | 0.0007 |
0.5752 | 780 | 0.0367 |
0.5900 | 800 | 0.0344 |
0.6047 | 820 | 0.0027 |
0.6195 | 840 | 0.0105 |
0.6342 | 860 | 0.0597 |
0.6490 | 880 | 0.0594 |
0.6637 | 900 | 0.0022 |
0.6785 | 920 | 0.0177 |
0.6932 | 940 | 0.0041 |
0.7080 | 960 | 0.0123 |
0.7227 | 980 | 0.0988 |
0.7375 | 1000 | 0.0248 |
0.7522 | 1020 | 0.0021 |
0.7670 | 1040 | 0.0376 |
0.7817 | 1060 | 0.0216 |
0.7965 | 1080 | 0.0779 |
0.8112 | 1100 | 0.0317 |
0.8260 | 1120 | 0.0233 |
0.8407 | 1140 | 0.0201 |
0.8555 | 1160 | 0.1391 |
0.8702 | 1180 | 0.0846 |
0.8850 | 1200 | 0.0064 |
0.8997 | 1220 | 0.1509 |
0.9145 | 1240 | 0.0196 |
0.9292 | 1260 | 0.0198 |
0.9440 | 1280 | 0.0174 |
0.9587 | 1300 | 0.117 |
0.9735 | 1320 | 0.0741 |
0.9882 | 1340 | 0.3282 |
1.0029 | 1360 | 0.0314 |
1.0177 | 1380 | 0.1522 |
1.0324 | 1400 | 0.0378 |
1.0472 | 1420 | 0.025 |
1.0619 | 1440 | 0.0442 |
1.0767 | 1460 | 0.0314 |
1.0914 | 1480 | 0.0745 |
1.1062 | 1500 | 0.0272 |
1.1209 | 1520 | 0.1248 |
1.1357 | 1540 | 0.299 |
1.1504 | 1560 | 0.0123 |
1.1652 | 1580 | 0.0245 |
1.1799 | 1600 | 0.0153 |
1.1947 | 1620 | 0.0171 |
1.2094 | 1640 | 0.0146 |
1.2242 | 1660 | 0.0313 |
1.2389 | 1680 | 0.0317 |
1.2537 | 1700 | 0.084 |
1.2684 | 1720 | 0.0569 |
1.2832 | 1740 | 0.1958 |
1.2979 | 1760 | 0.09 |
1.3127 | 1780 | 0.0526 |
1.3274 | 1800 | 0.0956 |
1.3422 | 1820 | 0.1601 |
1.3569 | 1840 | 0.156 |
1.3717 | 1860 | 0.0296 |
1.3864 | 1880 | 0.0391 |
1.4012 | 1900 | 0.0816 |
1.4159 | 1920 | 0.1262 |
1.4307 | 1940 | 0.1375 |
1.4454 | 1960 | 0.3373 |
1.4602 | 1980 | 0.094 |
1.4749 | 2000 | 0.0875 |
1.4897 | 2020 | 0.1161 |
1.5044 | 2040 | 0.1739 |
1.5192 | 2060 | 0.0526 |
1.5339 | 2080 | 0.1364 |
1.5487 | 2100 | 0.0508 |
1.5634 | 2120 | 0.0614 |
1.5782 | 2140 | 0.0589 |
1.5929 | 2160 | 0.0593 |
1.6077 | 2180 | 0.0078 |
1.6224 | 2200 | 0.2009 |
1.6372 | 2220 | 0.1356 |
1.6519 | 2240 | 0.1268 |
1.6667 | 2260 | 0.0257 |
1.6814 | 2280 | 0.0679 |
1.6962 | 2300 | 0.0229 |
1.7109 | 2320 | 0.1467 |
1.7257 | 2340 | 0.1239 |
1.7404 | 2360 | 0.0138 |
1.7552 | 2380 | 0.0997 |
1.7699 | 2400 | 0.0197 |
1.7847 | 2420 | 0.0358 |
1.7994 | 2440 | 0.0368 |
1.8142 | 2460 | 0.0755 |
1.8289 | 2480 | 0.1305 |
1.8437 | 2500 | 0.0164 |
1.8584 | 2520 | 0.1273 |
1.8732 | 2540 | 0.0255 |
1.8879 | 2560 | 0.0547 |
1.9027 | 2580 | 0.0494 |
1.9174 | 2600 | 0.1257 |
1.9322 | 2620 | 0.0434 |
1.9469 | 2640 | 0.0358 |
1.9617 | 2660 | 0.1272 |
1.9764 | 2680 | 0.022 |
1.9912 | 2700 | 0.054 |
2.0059 | 2720 | 0.0281 |
2.0206 | 2740 | 0.0229 |
2.0354 | 2760 | 0.0117 |
2.0501 | 2780 | 0.0242 |
2.0649 | 2800 | 0.0819 |
2.0796 | 2820 | 0.0625 |
2.0944 | 2840 | 0.0622 |
2.1091 | 2860 | 0.0316 |
2.1239 | 2880 | 0.2254 |
2.1386 | 2900 | 0.0857 |
2.1534 | 2920 | 0.026 |
2.1681 | 2940 | 0.0023 |
2.1829 | 2960 | 0.0053 |
2.1976 | 2980 | 0.004 |
2.2124 | 3000 | 0.0087 |
2.2271 | 3020 | 0.0068 |
2.2419 | 3040 | 0.0207 |
2.2566 | 3060 | 0.0522 |
2.2714 | 3080 | 0.005 |
2.2861 | 3100 | 0.038 |
2.3009 | 3120 | 0.0059 |
2.3156 | 3140 | 0.035 |
2.3304 | 3160 | 0.0603 |
2.3451 | 3180 | 0.0209 |
2.3599 | 3200 | 0.0103 |
2.3746 | 3220 | 0.0109 |
2.3894 | 3240 | 0.0755 |
2.4041 | 3260 | 0.0021 |
2.4189 | 3280 | 0.1019 |
2.4336 | 3300 | 0.1014 |
2.4484 | 3320 | 0.0198 |
2.4631 | 3340 | 0.0205 |
2.4779 | 3360 | 0.0431 |
2.4926 | 3380 | 0.1268 |
2.5074 | 3400 | 0.0097 |
2.5221 | 3420 | 0.0035 |
2.5369 | 3440 | 0.0292 |
2.5516 | 3460 | 0.0175 |
2.5664 | 3480 | 0.0687 |
2.5811 | 3500 | 0.021 |
2.5959 | 3520 | 0.0438 |
2.6106 | 3540 | 0.0024 |
2.6254 | 3560 | 0.0029 |
2.6401 | 3580 | 0.0267 |
2.6549 | 3600 | 0.0288 |
2.6696 | 3620 | 0.0058 |
2.6844 | 3640 | 0.0634 |
2.6991 | 3660 | 0.0404 |
2.7139 | 3680 | 0.0253 |
2.7286 | 3700 | 0.0127 |
2.7434 | 3720 | 0.0786 |
2.7581 | 3740 | 0.0739 |
2.7729 | 3760 | 0.0348 |
2.7876 | 3780 | 0.0697 |
2.8024 | 3800 | 0.0143 |
2.8171 | 3820 | 0.015 |
2.8319 | 3840 | 0.0139 |
2.8466 | 3860 | 0.023 |
2.8614 | 3880 | 0.0625 |
2.8761 | 3900 | 0.01 |
2.8909 | 3920 | 0.0656 |
2.9056 | 3940 | 0.0435 |
2.9204 | 3960 | 0.0367 |
2.9351 | 3980 | 0.0482 |
2.9499 | 4000 | 0.0557 |
2.9646 | 4020 | 0.1046 |
2.9794 | 4040 | 0.0578 |
2.9941 | 4060 | 0.0793 |
3.0088 | 4080 | 0.0053 |
3.0236 | 4100 | 0.0035 |
3.0383 | 4120 | 0.0095 |
3.0531 | 4140 | 0.001 |
3.0678 | 4160 | 0.0368 |
3.0826 | 4180 | 0.0251 |
3.0973 | 4200 | 0.0084 |
3.1121 | 4220 | 0.0224 |
3.1268 | 4240 | 0.0407 |
3.1416 | 4260 | 0.0611 |
3.1563 | 4280 | 0.0226 |
3.1711 | 4300 | 0.0092 |
3.1858 | 4320 | 0.0052 |
3.2006 | 4340 | 0.0578 |
3.2153 | 4360 | 0.0259 |
3.2301 | 4380 | 0.0002 |
3.2448 | 4400 | 0.0787 |
3.2596 | 4420 | 0.0194 |
3.2743 | 4440 | 0.0002 |
3.2891 | 4460 | 0.0006 |
3.3038 | 4480 | 0.0188 |
3.3186 | 4500 | 0.0722 |
3.3333 | 4520 | 0.0621 |
3.3481 | 4540 | 0.0017 |
3.3628 | 4560 | 0.1242 |
3.3776 | 4580 | 0.0057 |
3.3923 | 4600 | 0.0064 |
3.4071 | 4620 | 0.0016 |
3.4218 | 4640 | 0.0007 |
3.4366 | 4660 | 0.1187 |
3.4513 | 4680 | 0.0529 |
3.4661 | 4700 | 0.0294 |
3.4808 | 4720 | 0.1213 |
3.4956 | 4740 | 0.0221 |
3.5103 | 4760 | 0.0234 |
3.5251 | 4780 | 0.0034 |
3.5398 | 4800 | 0.0107 |
3.5546 | 4820 | 0.012 |
3.5693 | 4840 | 0.0351 |
3.5841 | 4860 | 0.0099 |
3.5988 | 4880 | 0.002 |
3.6136 | 4900 | 0.0024 |
3.6283 | 4920 | 0.0321 |
3.6431 | 4940 | 0.0008 |
3.6578 | 4960 | 0.038 |
3.6726 | 4980 | 0.0944 |
3.6873 | 5000 | 0.0227 |
3.7021 | 5020 | 0.0088 |
3.7168 | 5040 | 0.0573 |
3.7316 | 5060 | 0.2029 |
3.7463 | 5080 | 0.0522 |
3.7611 | 5100 | 0.012 |
3.7758 | 5120 | 0.0044 |
3.7906 | 5140 | 0.0178 |
3.8053 | 5160 | 0.0032 |
3.8201 | 5180 | 0.0375 |
3.8348 | 5200 | 0.0322 |
3.8496 | 5220 | 0.0066 |
3.8643 | 5240 | 0.0108 |
3.8791 | 5260 | 0.0143 |
3.8938 | 5280 | 0.0271 |
3.9086 | 5300 | 0.003 |
3.9233 | 5320 | 0.0183 |
3.9381 | 5340 | 0.0307 |
3.9528 | 5360 | 0.0026 |
3.9676 | 5380 | 0.0031 |
3.9823 | 5400 | 0.0011 |
3.9971 | 5420 | 0.0749 |
4.0118 | 5440 | 0.0192 |
4.0265 | 5460 | 0.037 |
4.0413 | 5480 | 0.0017 |
4.0560 | 5500 | 0.0013 |
4.0708 | 5520 | 0.0246 |
4.0855 | 5540 | 0.0007 |
4.1003 | 5560 | 0.045 |
4.1150 | 5580 | 0.038 |
4.1298 | 5600 | 0.0179 |
4.1445 | 5620 | 0.021 |
4.1593 | 5640 | 0.0012 |
4.1740 | 5660 | 0.0001 |
4.1888 | 5680 | 0.0004 |
4.2035 | 5700 | 0.0001 |
4.2183 | 5720 | 0.0021 |
4.2330 | 5740 | 0.0279 |
4.2478 | 5760 | 0.0044 |
4.2625 | 5780 | 0.0063 |
4.2773 | 5800 | 0.0046 |
4.2920 | 5820 | 0.0692 |
4.3068 | 5840 | 0.0007 |
4.3215 | 5860 | 0.0053 |
4.3363 | 5880 | 0.0288 |
4.3510 | 5900 | 0.0197 |
4.3658 | 5920 | 0.0007 |
4.3805 | 5940 | 0.002 |
4.3953 | 5960 | 0.0059 |
4.4100 | 5980 | 0.0258 |
4.4248 | 6000 | 0.001 |
4.4395 | 6020 | 0.0017 |
4.4543 | 6040 | 0.0024 |
4.4690 | 6060 | 0.0748 |
4.4838 | 6080 | 0.002 |
4.4985 | 6100 | 0.0498 |
4.5133 | 6120 | 0.0016 |
4.5280 | 6140 | 0.0018 |
4.5428 | 6160 | 0.0022 |
4.5575 | 6180 | 0.0012 |
4.5723 | 6200 | 0.009 |
4.5870 | 6220 | 0.0659 |
4.6018 | 6240 | 0.0121 |
4.6165 | 6260 | 0.0294 |
4.6313 | 6280 | 0.0002 |
4.6460 | 6300 | 0.0184 |
4.6608 | 6320 | 0.0158 |
4.6755 | 6340 | 0.0104 |
4.6903 | 6360 | 0.0498 |
4.7050 | 6380 | 0.0061 |
4.7198 | 6400 | 0.0305 |
4.7345 | 6420 | 0.0427 |
4.7493 | 6440 | 0.0004 |
4.7640 | 6460 | 0.0009 |
4.7788 | 6480 | 0.0001 |
4.7935 | 6500 | 0.0261 |
4.8083 | 6520 | 0.0019 |
4.8230 | 6540 | 0.0024 |
4.8378 | 6560 | 0.0228 |
4.8525 | 6580 | 0.0002 |
4.8673 | 6600 | 0.002 |
4.8820 | 6620 | 0.0005 |
4.8968 | 6640 | 0.0082 |
4.9115 | 6660 | 0.0119 |
4.9263 | 6680 | 0.0175 |
4.9410 | 6700 | 0.0011 |
4.9558 | 6720 | 0.0021 |
4.9705 | 6740 | 0.0106 |
4.9853 | 6760 | 0.018 |
5.0 | 6780 | 0.019 |
5.0147 | 6800 | 0.0629 |
5.0295 | 6820 | 0.0076 |
5.0442 | 6840 | 0.0004 |
5.0590 | 6860 | 0.0014 |
5.0737 | 6880 | 0.0012 |
5.0885 | 6900 | 0.0021 |
5.1032 | 6920 | 0.0032 |
5.1180 | 6940 | 0.0275 |
5.1327 | 6960 | 0.019 |
5.1475 | 6980 | 0.0006 |
5.1622 | 7000 | 0.0006 |
5.1770 | 7020 | 0.0049 |
5.1917 | 7040 | 0.0359 |
5.2065 | 7060 | 0.0028 |
5.2212 | 7080 | 0.0012 |
5.2360 | 7100 | 0.0138 |
5.2507 | 7120 | 0.0042 |
5.2655 | 7140 | 0.0003 |
5.2802 | 7160 | 0.0056 |
5.2950 | 7180 | 0.0329 |
5.3097 | 7200 | 0.0016 |
5.3245 | 7220 | 0.0092 |
5.3392 | 7240 | 0.0002 |
5.3540 | 7260 | 0.0211 |
5.3687 | 7280 | 0.019 |
5.3835 | 7300 | 0.0012 |
5.3982 | 7320 | 0.0002 |
5.4130 | 7340 | 0.0002 |
5.4277 | 7360 | 0.0143 |
5.4425 | 7380 | 0.0004 |
5.4572 | 7400 | 0.0004 |
5.4720 | 7420 | 0.0068 |
5.4867 | 7440 | 0.0201 |
5.5015 | 7460 | 0.0003 |
5.5162 | 7480 | 0.0042 |
5.5310 | 7500 | 0.0007 |
5.5457 | 7520 | 0.0664 |
5.5605 | 7540 | 0.0014 |
5.5752 | 7560 | 0.0175 |
5.5900 | 7580 | 0.0362 |
5.6047 | 7600 | 0.0225 |
5.6195 | 7620 | 0.0003 |
5.6342 | 7640 | 0.0025 |
5.6490 | 7660 | 0.0128 |
5.6637 | 7680 | 0.0013 |
5.6785 | 7700 | 0.0042 |
5.6932 | 7720 | 0.0012 |
5.7080 | 7740 | 0.0017 |
5.7227 | 7760 | 0.0039 |
5.7375 | 7780 | 0.0013 |
5.7522 | 7800 | 0.0008 |
5.7670 | 7820 | 0.006 |
5.7817 | 7840 | 0.0177 |
5.7965 | 7860 | 0.0189 |
5.8112 | 7880 | 0.0015 |
5.8260 | 7900 | 0.0003 |
5.8407 | 7920 | 0.001 |
5.8555 | 7940 | 0.0269 |
5.8702 | 7960 | 0.0006 |
5.8850 | 7980 | 0.0176 |
5.8997 | 8000 | 0.0048 |
5.9145 | 8020 | 0.0031 |
5.9292 | 8040 | 0.0056 |
5.9440 | 8060 | 0.0015 |
5.9587 | 8080 | 0.0102 |
5.9735 | 8100 | 0.0047 |
5.9882 | 8120 | 0.0339 |
6.0029 | 8140 | 0.0027 |
6.0177 | 8160 | 0.0008 |
6.0324 | 8180 | 0.0014 |
6.0472 | 8200 | 0.0001 |
6.0619 | 8220 | 0.0183 |
6.0767 | 8240 | 0.0142 |
6.0914 | 8260 | 0.0004 |
6.1062 | 8280 | 0.0392 |
6.1209 | 8300 | 0.0016 |
6.1357 | 8320 | 0.0025 |
6.1504 | 8340 | 0.0017 |
6.1652 | 8360 | 0.018 |
6.1799 | 8380 | 0.0031 |
6.1947 | 8400 | 0.0021 |
6.2094 | 8420 | 0.0244 |
6.2242 | 8440 | 0.0263 |
6.2389 | 8460 | 0.0183 |
6.2537 | 8480 | 0.0367 |
6.2684 | 8500 | 0.0009 |
6.2832 | 8520 | 0.0 |
6.2979 | 8540 | 0.0001 |
6.3127 | 8560 | 0.0011 |
6.3274 | 8580 | 0.0007 |
6.3422 | 8600 | 0.0004 |
6.3569 | 8620 | 0.0044 |
6.3717 | 8640 | 0.0174 |
6.3864 | 8660 | 0.0002 |
6.4012 | 8680 | 0.0176 |
6.4159 | 8700 | 0.0341 |
6.4307 | 8720 | 0.0015 |
6.4454 | 8740 | 0.0002 |
6.4602 | 8760 | 0.0043 |
6.4749 | 8780 | 0.0036 |
6.4897 | 8800 | 0.0001 |
6.5044 | 8820 | 0.0004 |
6.5192 | 8840 | 0.0474 |
6.5339 | 8860 | 0.0001 |
6.5487 | 8880 | 0.0003 |
6.5634 | 8900 | 0.0021 |
6.5782 | 8920 | 0.0014 |
6.5929 | 8940 | 0.0004 |
6.6077 | 8960 | 0.0176 |
6.6224 | 8980 | 0.0001 |
6.6372 | 9000 | 0.0009 |
6.6519 | 9020 | 0.0015 |
6.6667 | 9040 | 0.0003 |
6.6814 | 9060 | 0.0001 |
6.6962 | 9080 | 0.0016 |
6.7109 | 9100 | 0.0182 |
6.7257 | 9120 | 0.0002 |
6.7404 | 9140 | 0.0009 |
6.7552 | 9160 | 0.0018 |
6.7699 | 9180 | 0.0182 |
6.7847 | 9200 | 0.0 |
6.7994 | 9220 | 0.0206 |
6.8142 | 9240 | 0.0001 |
6.8289 | 9260 | 0.0002 |
6.8437 | 9280 | 0.0037 |
6.8584 | 9300 | 0.0238 |
6.8732 | 9320 | 0.0002 |
6.8879 | 9340 | 0.0 |
6.9027 | 9360 | 0.0002 |
6.9174 | 9380 | 0.019 |
6.9322 | 9400 | 0.0059 |
6.9469 | 9420 | 0.0002 |
6.9617 | 9440 | 0.0001 |
6.9764 | 9460 | 0.0004 |
6.9912 | 9480 | 0.0023 |
7.0059 | 9500 | 0.0006 |
7.0206 | 9520 | 0.0019 |
7.0354 | 9540 | 0.0176 |
7.0501 | 9560 | 0.0026 |
7.0649 | 9580 | 0.0014 |
7.0796 | 9600 | 0.0003 |
7.0944 | 9620 | 0.0001 |
7.1091 | 9640 | 0.0002 |
7.1239 | 9660 | 0.0362 |
7.1386 | 9680 | 0.001 |
7.1534 | 9700 | 0.0001 |
7.1681 | 9720 | 0.0002 |
7.1829 | 9740 | 0.0029 |
7.1976 | 9760 | 0.0002 |
7.2124 | 9780 | 0.0003 |
7.2271 | 9800 | 0.0027 |
7.2419 | 9820 | 0.0001 |
7.2566 | 9840 | 0.0001 |
7.2714 | 9860 | 0.0002 |
7.2861 | 9880 | 0.0124 |
7.3009 | 9900 | 0.0361 |
7.3156 | 9920 | 0.0039 |
7.3304 | 9940 | 0.0 |
7.3451 | 9960 | 0.0 |
7.3599 | 9980 | 0.0008 |
7.3746 | 10000 | 0.0002 |
7.3894 | 10020 | 0.0003 |
7.4041 | 10040 | 0.0001 |
7.4189 | 10060 | 0.0174 |
7.4336 | 10080 | 0.0015 |
7.4484 | 10100 | 0.0152 |
7.4631 | 10120 | 0.0351 |
7.4779 | 10140 | 0.0007 |
7.4926 | 10160 | 0.0005 |
7.5074 | 10180 | 0.0005 |
7.5221 | 10200 | 0.0001 |
7.5369 | 10220 | 0.0002 |
7.5516 | 10240 | 0.0001 |
7.5664 | 10260 | 0.001 |
7.5811 | 10280 | 0.0057 |
7.5959 | 10300 | 0.0012 |
7.6106 | 10320 | 0.0001 |
7.6254 | 10340 | 0.0005 |
7.6401 | 10360 | 0.0016 |
7.6549 | 10380 | 0.0072 |
7.6696 | 10400 | 0.0007 |
7.6844 | 10420 | 0.0001 |
7.6991 | 10440 | 0.0002 |
7.7139 | 10460 | 0.0036 |
7.7286 | 10480 | 0.0001 |
7.7434 | 10500 | 0.0002 |
7.7581 | 10520 | 0.0001 |
7.7729 | 10540 | 0.0001 |
7.7876 | 10560 | 0.0007 |
7.8024 | 10580 | 0.0002 |
7.8171 | 10600 | 0.0001 |
7.8319 | 10620 | 0.018 |
7.8466 | 10640 | 0.0882 |
7.8614 | 10660 | 0.0006 |
7.8761 | 10680 | 0.0001 |
7.8909 | 10700 | 0.0001 |
7.9056 | 10720 | 0.0001 |
7.9204 | 10740 | 0.0176 |
7.9351 | 10760 | 0.0002 |
7.9499 | 10780 | 0.0231 |
7.9646 | 10800 | 0.0002 |
7.9794 | 10820 | 0.0002 |
7.9941 | 10840 | 0.0 |
8.0088 | 10860 | 0.0001 |
8.0236 | 10880 | 0.0001 |
8.0383 | 10900 | 0.0003 |
8.0531 | 10920 | 0.0172 |
8.0678 | 10940 | 0.0002 |
8.0826 | 10960 | 0.018 |
8.0973 | 10980 | 0.0174 |
8.1121 | 11000 | 0.0001 |
8.1268 | 11020 | 0.0174 |
8.1416 | 11040 | 0.0 |
8.1563 | 11060 | 0.0039 |
8.1711 | 11080 | 0.0001 |
8.1858 | 11100 | 0.0 |
8.2006 | 11120 | 0.002 |
8.2153 | 11140 | 0.0176 |
8.2301 | 11160 | 0.0022 |
8.2448 | 11180 | 0.0001 |
8.2596 | 11200 | 0.0 |
8.2743 | 11220 | 0.0027 |
8.2891 | 11240 | 0.0198 |
8.3038 | 11260 | 0.0 |
8.3186 | 11280 | 0.0003 |
8.3333 | 11300 | 0.0223 |
8.3481 | 11320 | 0.0092 |
8.3628 | 11340 | 0.0001 |
8.3776 | 11360 | 0.0009 |
8.3923 | 11380 | 0.0014 |
8.4071 | 11400 | 0.0006 |
8.4218 | 11420 | 0.0006 |
8.4366 | 11440 | 0.0006 |
8.4513 | 11460 | 0.0005 |
8.4661 | 11480 | 0.0192 |
8.4808 | 11500 | 0.0347 |
8.4956 | 11520 | 0.0009 |
8.5103 | 11540 | 0.0002 |
8.5251 | 11560 | 0.0 |
8.5398 | 11580 | 0.0 |
8.5546 | 11600 | 0.0002 |
8.5693 | 11620 | 0.0174 |
8.5841 | 11640 | 0.0001 |
8.5988 | 11660 | 0.0171 |
8.6136 | 11680 | 0.0001 |
8.6283 | 11700 | 0.0001 |
8.6431 | 11720 | 0.0428 |
8.6578 | 11740 | 0.0003 |
8.6726 | 11760 | 0.0 |
8.6873 | 11780 | 0.0001 |
8.7021 | 11800 | 0.0176 |
8.7168 | 11820 | 0.0358 |
8.7316 | 11840 | 0.0002 |
8.7463 | 11860 | 0.0002 |
8.7611 | 11880 | 0.0001 |
8.7758 | 11900 | 0.0002 |
8.7906 | 11920 | 0.0015 |
8.8053 | 11940 | 0.0001 |
8.8201 | 11960 | 0.0001 |
8.8348 | 11980 | 0.0112 |
8.8496 | 12000 | 0.0033 |
8.8643 | 12020 | 0.0001 |
8.8791 | 12040 | 0.001 |
8.8938 | 12060 | 0.0174 |
8.9086 | 12080 | 0.0001 |
8.9233 | 12100 | 0.0002 |
8.9381 | 12120 | 0.0001 |
8.9528 | 12140 | 0.0001 |
8.9676 | 12160 | 0.0222 |
8.9823 | 12180 | 0.0003 |
8.9971 | 12200 | 0.0001 |
9.0118 | 12220 | 0.0 |
9.0265 | 12240 | 0.0001 |
9.0413 | 12260 | 0.0182 |
9.0560 | 12280 | 0.0174 |
9.0708 | 12300 | 0.0 |
9.0855 | 12320 | 0.0 |
9.1003 | 12340 | 0.0023 |
9.1150 | 12360 | 0.0001 |
9.1298 | 12380 | 0.0248 |
9.1445 | 12400 | 0.0 |
9.1593 | 12420 | 0.0 |
9.1740 | 12440 | 0.0 |
9.1888 | 12460 | 0.0001 |
9.2035 | 12480 | 0.0087 |
9.2183 | 12500 | 0.0 |
9.2330 | 12520 | 0.0003 |
9.2478 | 12540 | 0.0174 |
9.2625 | 12560 | 0.0 |
9.2773 | 12580 | 0.0006 |
9.2920 | 12600 | 0.0001 |
9.3068 | 12620 | 0.0053 |
9.3215 | 12640 | 0.0 |
9.3363 | 12660 | 0.0174 |
9.3510 | 12680 | 0.0001 |
9.3658 | 12700 | 0.0002 |
9.3805 | 12720 | 0.0001 |
9.3953 | 12740 | 0.0001 |
9.4100 | 12760 | 0.0001 |
9.4248 | 12780 | 0.0002 |
9.4395 | 12800 | 0.0002 |
9.4543 | 12820 | 0.0023 |
9.4690 | 12840 | 0.0 |
9.4838 | 12860 | 0.0018 |
9.4985 | 12880 | 0.0028 |
9.5133 | 12900 | 0.0174 |
9.5280 | 12920 | 0.0001 |
9.5428 | 12940 | 0.0001 |
9.5575 | 12960 | 0.0174 |
9.5723 | 12980 | 0.0003 |
9.5870 | 13000 | 0.0 |
9.6018 | 13020 | 0.0174 |
9.6165 | 13040 | 0.0001 |
9.6313 | 13060 | 0.0 |
9.6460 | 13080 | 0.0001 |
9.6608 | 13100 | 0.0174 |
9.6755 | 13120 | 0.0173 |
9.6903 | 13140 | 0.0 |
9.7050 | 13160 | 0.0005 |
9.7198 | 13180 | 0.0001 |
9.7345 | 13200 | 0.0002 |
9.7493 | 13220 | 0.0 |
9.7640 | 13240 | 0.0001 |
9.7788 | 13260 | 0.0 |
9.7935 | 13280 | 0.0026 |
9.8083 | 13300 | 0.0003 |
9.8230 | 13320 | 0.0001 |
9.8378 | 13340 | 0.0174 |
9.8525 | 13360 | 0.0099 |
9.8673 | 13380 | 0.0002 |
9.8820 | 13400 | 0.0 |
9.8968 | 13420 | 0.0032 |
9.9115 | 13440 | 0.0177 |
9.9263 | 13460 | 0.0175 |
9.9410 | 13480 | 0.0176 |
9.9558 | 13500 | 0.0001 |
9.9705 | 13520 | 0.0 |
9.9853 | 13540 | 0.0011 |
10.0 | 13560 | 0.0174 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.1
- Transformers: 4.57.0.dev0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 18
Model tree for Neelkumar/my-embedding-gemma-5424
Base model
google/embeddinggemma-300m