distilbert-fa-merged
This model is a fine-tuned version of HooshvareLab/distilbert-fa-zwnj-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6414
- Accuracy: 0.7252
- F1: 0.6988
- Precision: 0.7134
- Recall: 0.6896
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|---|
| 0.8163 | 1.0 | 705 | 0.6608 | 0.7196 | 0.6929 | 0.7297 | 0.6770 |
| 0.6332 | 2.0 | 1410 | 0.6414 | 0.7252 | 0.6988 | 0.7134 | 0.6896 |
| 0.4546 | 3.0 | 2115 | 0.6490 | 0.7212 | 0.6964 | 0.7020 | 0.6921 |
| 0.3769 | 4.0 | 2820 | 0.7321 | 0.7188 | 0.6934 | 0.7117 | 0.6828 |
Framework versions
- Transformers 4.54.0
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 9
Model tree for Negark/distilbert-fa-merged
Base model
HooshvareLab/distilbert-fa-zwnj-base