ColBERT MUVERA Small
This is a PyLate model finetuned from bclavie/mini-base on the msmarco-en-bge-gemma-unnormalized dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
This model is trained with un-normalized scores, making it compatible with MUVERA fixed-dimensional encoding.
Usage (txtai)
This model can be used to build embeddings databases with txtai for semantic search and/or as a knowledge source for retrieval augmented generation (RAG).
Note: txtai 9.0+ is required for late interaction model support
import txtai
embeddings = txtai.Embeddings(
sparse="neuml/colbert-muvera-small",
content=True
)
embeddings.index(documents())
# Run a query
embeddings.search("query to run")
Late interaction models excel as reranker pipelines.
from txtai.pipeline import Reranker, Similarity
similarity = Similarity(path="neuml/colbert-muvera-small", lateencode=True)
ranker = Reranker(embeddings, similarity)
ranker("query to run")
Usage (PyLate)
Alternatively, the model can be loaded with PyLate.
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path="neuml/colbert-muvera-small",
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
Full Model Architecture
ColBERT(
(0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: BertModel
(1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Evaluation
BEIR Subset
The following table shows a subset of BEIR scored with the txtai benchmarks script.
Scores reported are ndcg@10
and grouped into the following three categories.
FULL multi-vector maxsim
Model | Parameters | ArguAna | NFCorpus | SciFact | Average |
---|---|---|---|---|---|
AnswerAI ColBERT Small v1 | 33M | 0.4440 | 0.3649 | 0.7423 | 0.5171 |
ColBERT v2 | 110M | 0.4595 | 0.3165 | 0.6456 | 0.4739 |
ColBERT MUVERA Micro | 4M | 0.3947 | 0.3235 | 0.6676 | 0.4619 |
ColBERT MUVERA Small | 33M | 0.4455 | 0.3502 | 0.7145 | 0.5034 |
GTE ModernColBERT v1 | 149M | 0.4946 | 0.3717 | 0.7529 | 0.5397 |
MUVERA encoding + maxsim re-ranking of the top 100 results per MUVERA paper
Model | Parameters | ArguAna | NFCorpus | SciFact | Average |
---|---|---|---|---|---|
AnswerAI ColBERT Small v1 | 33M | 0.0317 | 0.1135 | 0.0836 | 0.0763 |
ColBERT v2 | 110M | 0.4562 | 0.3025 | 0.6278 | 0.4622 |
ColBERT MUVERA Micro | 4M | 0.3849 | 0.3095 | 0.6464 | 0.4469 |
ColBERT MUVERA Small | 33M | 0.4451 | 0.3537 | 0.7148 | 0.5045 |
GTE ModernColBERT v1 | 149M | 0.0265 | 0.1052 | 0.0556 | 0.0624 |
MUVERA encoding only
Model | Parameters | ArguAna | NFCorpus | SciFact | Average |
---|---|---|---|---|---|
AnswerAI ColBERT Small v1 | 33M | 0.0024 | 0.0201 | 0.0047 | 0.0091 |
ColBERT v2 | 110M | 0.3463 | 0.2356 | 0.5002 | 0.3607 |
ColBERT MUVERA Micro | 4M | 0.2795 | 0.2348 | 0.4875 | 0.3339 |
ColBERT MUVERA Small | 33M | 0.3850 | 0.2928 | 0.6357 | 0.4378 |
GTE ModernColBERT v1 | 149M | 0.0003 | 0.0203 | 0.0013 | 0.0073 |
Note: The scores reported don't match scores reported in the respective papers due to different default settings in the txtai benchmark scripts.
As noted earlier, models trained with min-max score normalization don't perform well with MUVERA encoding. See this GitHub Issue for more.
In reviewing the scores, this model is surprisingly and unreasonably competitive with the original ColBERT v2 model at only 3% of the size!
Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator
Metric | Value |
---|---|
MaxSim_accuracy@1 | 0.5995 |
MaxSim_accuracy@3 | 0.7522 |
MaxSim_accuracy@5 | 0.7984 |
MaxSim_accuracy@10 | 0.8646 |
MaxSim_precision@1 | 0.5995 |
MaxSim_precision@3 | 0.3589 |
MaxSim_precision@5 | 0.2732 |
MaxSim_precision@10 | 0.1885 |
MaxSim_recall@1 | 0.3574 |
MaxSim_recall@3 | 0.5047 |
MaxSim_recall@5 | 0.559 |
MaxSim_recall@10 | 0.6365 |
MaxSim_ndcg@10 | 0.617 |
MaxSim_mrr@10 | 0.6868 |
MaxSim_map@100 | 0.5394 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsgradient_accumulation_steps
: 4learning_rate
: 3e-06num_train_epochs
: 1warmup_ratio
: 0.05bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 4.0.2
- PyLate: 1.3.0
- Transformers: 4.52.3
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
PyLate
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
- Downloads last month
- 29
Model tree for NeuML/colbert-muvera-small
Base model
bclavie/mini-baseDataset used to train NeuML/colbert-muvera-small
Collection including NeuML/colbert-muvera-small
Evaluation results
- Maxsim Accuracy@1 on NanoClimateFEVERself-reported0.280
- Maxsim Accuracy@3 on NanoClimateFEVERself-reported0.380
- Maxsim Accuracy@5 on NanoClimateFEVERself-reported0.520
- Maxsim Accuracy@10 on NanoClimateFEVERself-reported0.640
- Maxsim Precision@1 on NanoClimateFEVERself-reported0.280
- Maxsim Precision@3 on NanoClimateFEVERself-reported0.147
- Maxsim Precision@5 on NanoClimateFEVERself-reported0.120
- Maxsim Precision@10 on NanoClimateFEVERself-reported0.080
- Maxsim Recall@1 on NanoClimateFEVERself-reported0.132
- Maxsim Recall@3 on NanoClimateFEVERself-reported0.210