whisper-large-v2-phase2-test
This model is a fine-tuned version of openai/whisper-large-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5457
- Cer: 16.3233
- Wer: 27.7114
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 1.1099 | 1.0 | 2111 | 0.4675 | 25.1766 | 40.3020 |
| 0.6578 | 2.0 | 4222 | 0.4679 | 21.6808 | 35.4688 |
| 0.5034 | 3.0 | 6333 | 0.4749 | 21.5618 | 35.0969 |
| 0.3984 | 4.0 | 8444 | 0.4755 | 23.2471 | 38.2574 |
| 0.3204 | 5.0 | 10555 | 0.4918 | 19.0426 | 31.4930 |
| 0.2566 | 6.0 | 12666 | 0.4970 | 18.2685 | 30.2707 |
| 0.2062 | 7.0 | 14777 | 0.5151 | 18.2196 | 30.6263 |
| 0.1668 | 8.0 | 16888 | 0.5326 | 16.6726 | 28.2915 |
| 0.1376 | 9.0 | 18999 | 0.5457 | 16.3233 | 27.7114 |
| 0.1107 | 10.0 | 21110 | 0.5543 | 16.8117 | 28.3746 |
| 0.0932 | 11.0 | 23221 | 0.5640 | 16.6303 | 28.1617 |
| 0.0789 | 12.0 | 25332 | 0.5871 | 16.5051 | 28.0401 |
| 0.0671 | 13.0 | 27443 | 0.5943 | 16.3639 | 27.7605 |
| 0.0596 | 14.0 | 29554 | 0.6002 | 16.5290 | 28.0061 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.0+cu128
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 7
Model tree for NgQuocThai/whisper-large-v2-phase2-test
Base model
openai/whisper-large-v2