NghiBuine's picture
Add new SentenceTransformer model
2fac264 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:972
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: keepitreal/vietnamese-sbert
widget:
- source_sentence: Giày Boot Nữ Dr. Martens 1460
sentences:
- Boot nữ đế chống nước dầu
- chống nắng an toàn cho da nhạy cảm không gây kích ứng
- sản phẩm đi kèm hộp, dây sạc Type-C sách hướng dẫn chi tiết
- source_sentence: Giày Sneaker Nike Air Force 1
sentences:
- quần tây nam vải co giãn nhẹ, linh hoạt khi di chuyển
- quần short thể thao nữ vải mát lạnh, co giãn cực tốt
- Giày sneaker Air Force 1 logo Swoosh
- source_sentence: Giày Loafer Da Bóng Nam Cổ Điển
sentences:
- đế cao su chống trượt giúp di chuyển an toàn
- Sony WH-1000XM5 hỗ trợ Hi-Res Audio Wireless
- màn hình cảm ứng 13.4 inch tỉ lệ 16:10, độ phân giải 4K UHD+ sắc nét, màu sống
động, góc nhìn rộng
- source_sentence: Giày Cao Gót Christian Louboutin
sentences:
- rửa mặt bằng sữa Some By Mi giúp kiểm soát dầu hiệu quả
- quần tây nữ xếp ly phía trước tạo hiệu ứng dáng cao
- Giày Louboutin lót mềm thoải mái
- source_sentence: Áo Mi Nữ Tay Dài Họa Tiết Caro
sentences:
- áo mi nữ tay dài họa tiết caro nhỏ cổ điển trẻ trung
- khuy cài phía trước được thiết kế ẩn tinh tế
- các thiết kế như cạp cao tôn dáng, gấu tua rua, chi tiết rách nhẹ
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on keepitreal/vietnamese-sbert
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.009259259259259259
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.027777777777777776
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.2777777777777778
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0030864197530864196
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.005555555555555557
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.027777777777777783
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.009259259259259259
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.027777777777777776
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2777777777777778
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.09190266762601638
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.03934817754262198
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.049514242466381884
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.009259259259259259
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.009259259259259259
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.25925925925925924
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0030864197530864196
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.001851851851851852
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.02592592592592593
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.009259259259259259
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.009259259259259259
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.25925925925925924
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.08541654381551299
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.03630217519106408
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.04747912217641579
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.009259259259259259
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.018518518518518517
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.018518518518518517
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.26851851851851855
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.009259259259259259
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.006172839506172839
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.003703703703703704
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.026851851851851856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.009259259259259259
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.018518518518518517
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.018518518518518517
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.26851851851851855
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.09499080067258153
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.046222810111699
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.05635122599163806
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.009259259259259259
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.24074074074074073
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.001851851851851852
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.024074074074074074
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.009259259259259259
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.24074074074074073
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.07767536292853462
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.03192239858906525
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.042847271207784025
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.2222222222222222
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.022222222222222223
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2222222222222222
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.0710622436721403
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.028813932980599647
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.039492961403908525
name: Cosine Map@100
---
# SentenceTransformer based on keepitreal/vietnamese-sbert
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) <!-- at revision a9467ef2ef47caa6448edeabfd8e5e5ce0fa2a23 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NghiBuine/search-ecommerce-product-model")
# Run inference
sentences = [
'Áo Sơ Mi Nữ Tay Dài Họa Tiết Caro',
'áo sơ mi nữ tay dài họa tiết caro nhỏ cổ điển trẻ trung',
'các thiết kế như cạp cao tôn dáng, gấu tua rua, chi tiết rách nhẹ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 768
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0093 |
| cosine_accuracy@5 | 0.0278 |
| cosine_accuracy@10 | 0.2778 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0031 |
| cosine_precision@5 | 0.0056 |
| cosine_precision@10 | 0.0278 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0093 |
| cosine_recall@5 | 0.0278 |
| cosine_recall@10 | 0.2778 |
| **cosine_ndcg@10** | **0.0919** |
| cosine_mrr@10 | 0.0393 |
| cosine_map@100 | 0.0495 |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 512
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0093 |
| cosine_accuracy@5 | 0.0093 |
| cosine_accuracy@10 | 0.2593 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0031 |
| cosine_precision@5 | 0.0019 |
| cosine_precision@10 | 0.0259 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0093 |
| cosine_recall@5 | 0.0093 |
| cosine_recall@10 | 0.2593 |
| **cosine_ndcg@10** | **0.0854** |
| cosine_mrr@10 | 0.0363 |
| cosine_map@100 | 0.0475 |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 256
}
```
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.0093 |
| cosine_accuracy@3 | 0.0185 |
| cosine_accuracy@5 | 0.0185 |
| cosine_accuracy@10 | 0.2685 |
| cosine_precision@1 | 0.0093 |
| cosine_precision@3 | 0.0062 |
| cosine_precision@5 | 0.0037 |
| cosine_precision@10 | 0.0269 |
| cosine_recall@1 | 0.0093 |
| cosine_recall@3 | 0.0185 |
| cosine_recall@5 | 0.0185 |
| cosine_recall@10 | 0.2685 |
| **cosine_ndcg@10** | **0.095** |
| cosine_mrr@10 | 0.0462 |
| cosine_map@100 | 0.0564 |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 128
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.0093 |
| cosine_accuracy@10 | 0.2407 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0019 |
| cosine_precision@10 | 0.0241 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.0093 |
| cosine_recall@10 | 0.2407 |
| **cosine_ndcg@10** | **0.0777** |
| cosine_mrr@10 | 0.0319 |
| cosine_map@100 | 0.0428 |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 64
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.0 |
| cosine_accuracy@10 | 0.2222 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0 |
| cosine_precision@10 | 0.0222 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.0 |
| cosine_recall@10 | 0.2222 |
| **cosine_ndcg@10** | **0.0711** |
| cosine_mrr@10 | 0.0288 |
| cosine_map@100 | 0.0395 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 972 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 972 samples:
| | positive | anchor |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 11.73 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.29 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| positive | anchor |
|:---------------------------------------------------------|:-----------------------------------------------------------------------------------|
| <code>Giày Thể Thao Nữ Chunky Sneaker Hồng Pastel</code> | <code>đế cao 4.5cm giúp hack dáng tăng chiều cao vẫn thoải mái</code> |
| <code>Bộ Xếp Hình Gỗ 3D Động Vật Rừng</code> | <code>rèn luyện kỹ năng nhận dạng hình khối và phát triển khả năng quan sát</code> |
| <code>Rubik Mirror Cube Biến Hình 3x3</code> | <code>vỏ Rubik mạ gương vàng bóng nổi bật và sang trọng</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `bf16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| **0.5161** | **1** | **0.0934** | **0.0877** | **0.09** | **0.0803** | **0.0773** |
| 1.5484 | 3 | 0.0905 | 0.0836 | 0.0923 | 0.0782 | 0.0708 |
| 2.0645 | 4 | 0.0919 | 0.0854 | 0.0950 | 0.0777 | 0.0711 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 4.1.0
- Transformers: 4.41.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->