File size: 5,881 Bytes
56ac1a6
f9a49b4
 
56ac1a6
 
 
 
 
ff7c2cf
 
 
56ac1a6
25ae421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56ac1a6
7354f15
bfdc9cd
56ac1a6
bfdc9cd
 
 
56ac1a6
bfdc9cd
 
56ac1a6
bfdc9cd
f9a49b4
 
 
bfdc9cd
f9a49b4
bfdc9cd
 
 
 
 
 
 
 
 
 
 
f9a49b4
 
 
bfdc9cd
 
 
 
 
 
 
 
 
f9a49b4
bfdc9cd
f9a49b4
bfdc9cd
f9a49b4
 
bfdc9cd
 
f9a49b4
bfdc9cd
8855e3e
bfdc9cd
8855e3e
bfdc9cd
 
 
 
8855e3e
 
f9a49b4
bfdc9cd
 
f9a49b4
8855e3e
bfdc9cd
 
 
 
8855e3e
bfdc9cd
8855e3e
bfdc9cd
 
 
8855e3e
bfdc9cd
8855e3e
bfdc9cd
f9a49b4
bfdc9cd
f9a49b4
bfdc9cd
 
 
 
 
 
f9a49b4
 
 
bfdc9cd
f9a49b4
bfdc9cd
 
 
 
f9a49b4
 
 
bfdc9cd
f9a49b4
bfdc9cd
 
 
 
f9a49b4
bfdc9cd
f9a49b4
bfdc9cd
f9a49b4
bfdc9cd
 
 
f9a49b4
 
 
bfdc9cd
 
 
f9a49b4
 
bfdc9cd
 
 
f9a49b4
bfdc9cd
f9a49b4
 
 
 
 
bfdc9cd
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---
base_model:
- Qwen/Qwen3-1.7B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: other
license_name: anvdl-1.0
license_link: https://huggingface.co/apexion-ai/Nous-V1-8B/blob/main/LICENSE.md
language:
  - en
  - fr
  - pt
  - de
  - ro
  - sv
  - da
  - bg
  - ru
  - cs
  - el
  - uk
  - es
  - nl
  - sk
  - hr
  - pl
  - lt
  - nb
  - nn
  - fa
  - sl
  - gu
  - lv
  - it
  - oc
  - ne
  - mr
  - be
  - sr
  - lb
  - vec
  - as
  - cy
  - szl
  - ast
  - hne
  - awa
  - mai
  - bho
  - sd
  - ga
  - fo
  - hi
  - pa
  - bn
  - or
  - tg
  - yi
  - lmo
  - lij
  - scn
  - fur
  - sc
  - gl
  - ca
  - is
  - sq
  - li
  - prs
  - af
  - mk
  - si
  - ur
  - mag
  - bs
  - hy
  - zh
  - yue
  - my
  - ar
  - he
  - mt
  - id
  - ms
  - tl
  - ceb
  - jv
  - su
  - min
  - ban
  - pag
  - ilo
  - war
  - ta
  - te
  - kn
  - ml
  - tr
  - az
  - uz
  - kk
  - ba
  - tt
  - th
  - lo
  - fi
  - et
  - hu
  - vi
  - km
  - ja
  - ko
  - ka
  - eu
  - ht
  - pap
  - kea
  - tpi
  - sw

---
![banner](https://huggingface.co/NoemaResearch/Apollo-1-4B/resolve/main/img/banner.png)
# Apollo-1-2B

[![Model](https://img.shields.io/badge/Model-Apollo--1--2B-blue)](https://huggingface.co/NoemaResearch/Apollo-1-2B)
[![Base](https://img.shields.io/badge/Base-Qwen3--1.7B-green)](https://huggingface.co/Qwen/Qwen3-1.7B)
[![License](https://img.shields.io/badge/License-Apache_2.0-yellow)](LICENSE)

Apollo-1-2B is a **2 billion parameter instruction-tuned model** developed by **Noema Research**.  
It is based on [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) and optimized for **general reasoning, language understanding, and lightweight deployment**.  

This model is the first release in the **Apollo series**, intended as a foundation for scalable experimentation and real-world applications in constrained environments.  

---

## Model Overview

- **Base model:** `Qwen3-1.7B`  
- **Architecture:** Decoder-only transformer  
- **Parameters:** ~2B  
- **Context length:** up to 32k tokens (inherits Qwen3 long-context support)  
- **Domain:** General-purpose reasoning and instruction following  
- **Primary applications:**  
  - Conversational AI  
  - Lightweight reasoning tasks  
  - Education and tutoring  
  - Prototype agents and assistants  
- **License:** anvdl-1.0

---

## Key Features

- **Instruction tuned**: More reliable responses in conversational and task-oriented settings  
- **Lightweight deployment**: Optimized for environments with limited compute or memory resources  
- **Extended context**: Inherits long-context capability from Qwen3 base  
- **Balanced outputs**: Improved refusal behaviors and reduced hallucinations compared to the base model  
- **Multilingual ability**: Retains multilingual knowledge from Qwen3 family  

---

## Usage

The model is available in Hugging Face Transformers format. Example:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "NoemaResearch/Apollo-1-2B"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

messages = [
    {"role":"system", "content":"You are Apollo, a reasoning assistant."},
    {"role":"user", "content":"Explain the difference between supervised and unsupervised learning."}
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7, top_p=0.9)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
````

**Recommended settings:**

* `temperature=0.5–0.9`
* `top_p=0.85–0.95`
* For structured outputs (e.g. JSON), use lower temperatures for stability

---

## Evaluation

Apollo-1-2B has been evaluated internally on a range of reasoning and language tasks. Key findings:

* Improved **instruction following** relative to Qwen3-1.7B
* More **concise and accurate responses** in structured tasks
* Maintains **multilingual performance** from the base model
* Effective for **lightweight assistant applications**

Future work will include publishing comprehensive benchmark comparisons against other models in the 1–3B parameter range.

---

## Limitations

* **Reasoning depth**: As a 2B parameter model, Apollo cannot match larger-scale LLMs on complex reasoning tasks
* **Knowledge coverage**: May lack depth in specialized or low-resource domains
* **Hallucinations**: Although reduced, the model may still generate incorrect or fabricated information
* **Sensitivity to prompts**: Outputs vary with prompt phrasing; careful prompt design recommended

---

## Responsible Use

* Do not rely on Apollo for critical decision-making without human oversight
* Generated outputs may contain inaccuracies; verification is required for factual or sensitive use cases
* Avoid providing personal, private, or sensitive information in prompts
* This model should not be used to generate disallowed, unsafe, or harmful content

---

## Model Variants

* **Full precision (safetensors)** — research and full-fidelity inference
* **bf16 / fp16** — optimized for inference on GPUs/TPUs
* **Quantized versions (int8 / int4)** — for deployment in constrained hardware environments

---

## Citation

If you use this model, please cite both Apollo-1-2B and the Qwen3 base model:

```bibtex
@misc{noema2025apollo,
  title={Apollo-1-2B},
  author={Noema Research},
  year={2025},
  howpublished={\url{https://huggingface.co/NoemaResearch/Apollo-1-2B}}
}
```

---

## Acknowledgements

Apollo-1-2B builds upon the [Qwen3](https://huggingface.co/Qwen) series of models.
We thank the Qwen team for making their work openly available under permissive terms, which enabled this derivative research.

---