File size: 5,881 Bytes
56ac1a6 f9a49b4 56ac1a6 ff7c2cf 56ac1a6 25ae421 56ac1a6 7354f15 bfdc9cd 56ac1a6 bfdc9cd 56ac1a6 bfdc9cd 56ac1a6 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd 8855e3e bfdc9cd 8855e3e bfdc9cd 8855e3e f9a49b4 bfdc9cd f9a49b4 8855e3e bfdc9cd 8855e3e bfdc9cd 8855e3e bfdc9cd 8855e3e bfdc9cd 8855e3e bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd f9a49b4 bfdc9cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
---
base_model:
- Qwen/Qwen3-1.7B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: other
license_name: anvdl-1.0
license_link: https://huggingface.co/apexion-ai/Nous-V1-8B/blob/main/LICENSE.md
language:
- en
- fr
- pt
- de
- ro
- sv
- da
- bg
- ru
- cs
- el
- uk
- es
- nl
- sk
- hr
- pl
- lt
- nb
- nn
- fa
- sl
- gu
- lv
- it
- oc
- ne
- mr
- be
- sr
- lb
- vec
- as
- cy
- szl
- ast
- hne
- awa
- mai
- bho
- sd
- ga
- fo
- hi
- pa
- bn
- or
- tg
- yi
- lmo
- lij
- scn
- fur
- sc
- gl
- ca
- is
- sq
- li
- prs
- af
- mk
- si
- ur
- mag
- bs
- hy
- zh
- yue
- my
- ar
- he
- mt
- id
- ms
- tl
- ceb
- jv
- su
- min
- ban
- pag
- ilo
- war
- ta
- te
- kn
- ml
- tr
- az
- uz
- kk
- ba
- tt
- th
- lo
- fi
- et
- hu
- vi
- km
- ja
- ko
- ka
- eu
- ht
- pap
- kea
- tpi
- sw
---

# Apollo-1-2B
[](https://huggingface.co/NoemaResearch/Apollo-1-2B)
[](https://huggingface.co/Qwen/Qwen3-1.7B)
[](LICENSE)
Apollo-1-2B is a **2 billion parameter instruction-tuned model** developed by **Noema Research**.
It is based on [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) and optimized for **general reasoning, language understanding, and lightweight deployment**.
This model is the first release in the **Apollo series**, intended as a foundation for scalable experimentation and real-world applications in constrained environments.
---
## Model Overview
- **Base model:** `Qwen3-1.7B`
- **Architecture:** Decoder-only transformer
- **Parameters:** ~2B
- **Context length:** up to 32k tokens (inherits Qwen3 long-context support)
- **Domain:** General-purpose reasoning and instruction following
- **Primary applications:**
- Conversational AI
- Lightweight reasoning tasks
- Education and tutoring
- Prototype agents and assistants
- **License:** anvdl-1.0
---
## Key Features
- **Instruction tuned**: More reliable responses in conversational and task-oriented settings
- **Lightweight deployment**: Optimized for environments with limited compute or memory resources
- **Extended context**: Inherits long-context capability from Qwen3 base
- **Balanced outputs**: Improved refusal behaviors and reduced hallucinations compared to the base model
- **Multilingual ability**: Retains multilingual knowledge from Qwen3 family
---
## Usage
The model is available in Hugging Face Transformers format. Example:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "NoemaResearch/Apollo-1-2B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
messages = [
{"role":"system", "content":"You are Apollo, a reasoning assistant."},
{"role":"user", "content":"Explain the difference between supervised and unsupervised learning."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7, top_p=0.9)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
````
**Recommended settings:**
* `temperature=0.5–0.9`
* `top_p=0.85–0.95`
* For structured outputs (e.g. JSON), use lower temperatures for stability
---
## Evaluation
Apollo-1-2B has been evaluated internally on a range of reasoning and language tasks. Key findings:
* Improved **instruction following** relative to Qwen3-1.7B
* More **concise and accurate responses** in structured tasks
* Maintains **multilingual performance** from the base model
* Effective for **lightweight assistant applications**
Future work will include publishing comprehensive benchmark comparisons against other models in the 1–3B parameter range.
---
## Limitations
* **Reasoning depth**: As a 2B parameter model, Apollo cannot match larger-scale LLMs on complex reasoning tasks
* **Knowledge coverage**: May lack depth in specialized or low-resource domains
* **Hallucinations**: Although reduced, the model may still generate incorrect or fabricated information
* **Sensitivity to prompts**: Outputs vary with prompt phrasing; careful prompt design recommended
---
## Responsible Use
* Do not rely on Apollo for critical decision-making without human oversight
* Generated outputs may contain inaccuracies; verification is required for factual or sensitive use cases
* Avoid providing personal, private, or sensitive information in prompts
* This model should not be used to generate disallowed, unsafe, or harmful content
---
## Model Variants
* **Full precision (safetensors)** — research and full-fidelity inference
* **bf16 / fp16** — optimized for inference on GPUs/TPUs
* **Quantized versions (int8 / int4)** — for deployment in constrained hardware environments
---
## Citation
If you use this model, please cite both Apollo-1-2B and the Qwen3 base model:
```bibtex
@misc{noema2025apollo,
title={Apollo-1-2B},
author={Noema Research},
year={2025},
howpublished={\url{https://huggingface.co/NoemaResearch/Apollo-1-2B}}
}
```
---
## Acknowledgements
Apollo-1-2B builds upon the [Qwen3](https://huggingface.co/Qwen) series of models.
We thank the Qwen team for making their work openly available under permissive terms, which enabled this derivative research.
---
|