ljcc's picture
Update README.md
3380242 verified
metadata
license: mit
datasets:
  - muse-bench/MUSE-News
language:
  - en
base_model:
  - muse-bench/MUSE-news_target
pipeline_tag: text-generation
library_name: transformers
tags:
  - unlearn
  - machine-unlearning
  - llm-unlearning
  - data-privacy
  - large-language-models
  - trustworthy-ai
  - trustworthy-machine-learning
  - language-model

SimNPO-Unlearned Model on Task "MUSE - News"

Model Details

Unlearning Algorithm

This model uses the SimNPO unlearning algorithm with the following optimization objective: SimNPO(θ)=E(x,y)Df[2βlogσ(βylogπθ(yx)γ)]+λE(x,y)Dr[logπθ(yx)]\ell_{SimNPO}(\mathbf{\theta}) = \mathbb{E}_{(x, y) \in \mathcal{D}_f}\left[-\frac{2}{\beta}\log\sigma\left(-\frac{\beta}{|y|}\log\pi_{\mathbf{\theta}}(y|x) - \gamma\right)\right] + \lambda \mathbb{E}_{(x, y) \in \mathcal{D}_r}[-\log\pi_{\mathbf{\theta}} (y|x)] Unlearning hyper-parameters:

  • Learning Rate: 1e-5
  • beta: 0.7
  • lambda: 1.0
  • gamma: 3.0

Loading the Model

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-MUSE-News-llama-2-7b", torch_dtype=torch.bfloat16, device_map='auto')

Evaluation Results

VerbMem Df KnowMem Df PrivLeak KnowMem Dr
Origin 58.29 62.93 -98.71 54.31
Retrain 20.75 33.32 0.00 53.79
NPO 0.00 56.93 56.93 108.91
SimNPO 12.90 47.09 11.90 40.31

Citation

If you use this model in your research, please cite:

@article{fan2024simplicity,
  title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
  author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
  journal={arXiv preprint arXiv:2410.07163},
  year={2024}
}

Reporting Issues

Reporting issues with the model: github.com/OPTML-Group/Unlearn-Simple