Mistral 7B – LoRA r=4 (MedQuAD)

Fine-tuned with LoRA (r=4) using dataset lavita/MedQuAD
Base model: mistralai/Mistral-7B-Instruct-v0.3
Quantization: 4-bit NF4
GPU: A100 80GB

πŸ“Š Final Results

  • Validation Loss: 0.8431
  • Perplexity: 2.324

🧾 Training Metrics

Epoch Step Training Loss Validation Loss
0.33 200 0.855 0.852
0.66 400 0.821 0.826
1.0 600 0.807 0.812

πŸ’» Example usage

from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer

model = AutoPeftModelForCausalLM.from_pretrained("REPO_ID", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")

text = "[INST] What is anemia? [/INST]"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
out = model.generate(**inputs, max_new_tokens=80)
print(tokenizer.decode(out[0], skip_special_tokens=True)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for OSCARcr/mistral-medquad-lora-r4

Adapter
(522)
this model

Dataset used to train OSCARcr/mistral-medquad-lora-r4