|
--- |
|
language: en |
|
tags: |
|
- deit |
|
license: apache-2.0 |
|
--- |
|
|
|
# DeiT |
|
|
|
## Model description |
|
|
|
DeiT proposed in [this paper](https://arxiv.org/abs/2012.12877) are more efficiently trained transformers for image classification, requiring far less data and far less computing resources compared to the original ViT models. |
|
|
|
## Original implementation |
|
|
|
Follow [this link](https://huggingface.co/docs/transformers/main/en/model_doc/deit#deit) to see the original implementation. |
|
|
|
## How to use |
|
|
|
```{python} |
|
from onnxruntime import InferenceSession |
|
from transformers import DeiTFeatureExtractor, DeiTForImageClassification |
|
import torch |
|
from PIL import Image |
|
import requests |
|
|
|
torch.manual_seed(3) |
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
feature_extractor = DeiTFeatureExtractor.from_pretrained("facebook/deit-base-distilled-patch16-224") |
|
inputs = feature_extractor(images=image, return_tensors="np") |
|
session = InferenceSession("onnx/model.onnx") |
|
|
|
# ONNX Runtime expects NumPy arrays as input |
|
outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs)) |
|
``` |