Layoutlmv3-finetuned-DocLayNet-manual_v2_tune3
This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0791
- Precision: 0.9792
- Recall: 0.9793
- F1: 0.9792
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
0.0905 | 1.0 | 2153 | 0.0910 | 0.9727 | 0.9725 | 0.9721 |
0.048 | 2.0 | 4306 | 0.1004 | 0.9721 | 0.9712 | 0.9706 |
0.0334 | 3.0 | 6459 | 0.0824 | 0.9782 | 0.9781 | 0.9779 |
0.0261 | 4.0 | 8612 | 0.0853 | 0.9757 | 0.9751 | 0.9747 |
0.0168 | 5.0 | 10765 | 0.0899 | 0.9755 | 0.9749 | 0.9744 |
Framework versions
- Transformers 4.52.0.dev0
- Pytorch 2.4.1
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for OlaAbdallah/Layoutlmv3-finetuned-DocLayNet-manual_v2_tune3
Base model
microsoft/layoutlmv3-base