LayoutLMv3-LoRA

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1752
  • Precision: 0.9469
  • Recall: 0.9620
  • F1: 0.9544
  • Accuracy: 0.9669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 100 0.4903 0.8217 0.8442 0.8328 0.8719
No log 2.0 200 0.2973 0.8672 0.8784 0.8728 0.9033
No log 3.0 300 0.2040 0.9277 0.9362 0.9319 0.9512
No log 4.0 400 0.2070 0.9211 0.9309 0.9259 0.9487
0.4199 5.0 500 0.2197 0.9098 0.9354 0.9224 0.9461
0.4199 6.0 600 0.1947 0.9422 0.9536 0.9479 0.9572
0.4199 7.0 700 0.1947 0.9403 0.9567 0.9484 0.9618
0.4199 8.0 800 0.1897 0.9358 0.9529 0.9443 0.9601
0.4199 9.0 900 0.1770 0.9453 0.9590 0.9521 0.9648
0.0497 10.0 1000 0.1752 0.9469 0.9620 0.9544 0.9669

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
35
Safetensors
Model size
126M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Omar-Torky/LayoutLMv3-LoRA

Finetuned
(266)
this model