LayoutLMv3-LoRA
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1752
- Precision: 0.9469
- Recall: 0.9620
- F1: 0.9544
- Accuracy: 0.9669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 100 | 0.4903 | 0.8217 | 0.8442 | 0.8328 | 0.8719 |
No log | 2.0 | 200 | 0.2973 | 0.8672 | 0.8784 | 0.8728 | 0.9033 |
No log | 3.0 | 300 | 0.2040 | 0.9277 | 0.9362 | 0.9319 | 0.9512 |
No log | 4.0 | 400 | 0.2070 | 0.9211 | 0.9309 | 0.9259 | 0.9487 |
0.4199 | 5.0 | 500 | 0.2197 | 0.9098 | 0.9354 | 0.9224 | 0.9461 |
0.4199 | 6.0 | 600 | 0.1947 | 0.9422 | 0.9536 | 0.9479 | 0.9572 |
0.4199 | 7.0 | 700 | 0.1947 | 0.9403 | 0.9567 | 0.9484 | 0.9618 |
0.4199 | 8.0 | 800 | 0.1897 | 0.9358 | 0.9529 | 0.9443 | 0.9601 |
0.4199 | 9.0 | 900 | 0.1770 | 0.9453 | 0.9590 | 0.9521 | 0.9648 |
0.0497 | 10.0 | 1000 | 0.1752 | 0.9469 | 0.9620 | 0.9544 | 0.9669 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
- Downloads last month
- 35
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Omar-Torky/LayoutLMv3-LoRA
Base model
microsoft/layoutlmv3-base