Ara-EuroBERT: Arabic Semantic Text Embeddings at Scale

Ara-EuroBERT-2.1B is a sentence-transformers model fine-tuned from EuroBERT/EuroBERT-2.1B, specifically optimized for Arabic semantic embeddings.
This model maps sentences and paragraphs to a 2304-dimensional dense vector space and supports up to 8,192 tokens in a single input sequence.
This model supports Matryoshka (nested) embeddings with the following dimensions:
- Full dimension: 2304
- Reduced dimensions: 1151, 960 , 580
You can select the embedding dimension based on your specific requirements, trading off between performance and computational efficiency.
It is suitable for:
- Semantic textual similarity
- Semantic search
- Paraphrase mining
- Text classification
- Clustering
- And other Arabic NLP tasks
You can find more information on the base model at EuroBERT/EuroBERT-2.1B
🧠 Model Details & Benchmark Performance
🔬 Benchmark Highlights
- STS17 Benchmark: AraEuroBERT-2.1B achieves a score of 79, significantly outperforming the standard EuroBERT-2.1B (12).
- STS22.v2 Benchmark: Scores 55, competitive with much smaller and more efficient models.
🧪 Metrics
Semantic Similarity
- Datasets:
sts-dev-2304
,sts-dev-1152
,sts-dev-960
,sts-dev-580
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev-2304 | sts-dev-1152 | sts-dev-960 | sts-dev-580 |
---|---|---|---|---|
Pearson (cosine) | 0.7268 | 0.7267 | 0.7263 | 0.7246 |
Spearman (cosine) | 0.7298 | 0.7299 | 0.7297 | 0.7286 |
📦 Model Description
- Model Type: Sentence Transformer
- Base Model: EuroBERT/EuroBERT-2.1B
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 2304 dimensions (supports nested dimensions: 2304, 1152, 960, 580)
- Similarity Function: Cosine Similarity
- Language: Arabic
🧬 Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: EuroBertModel
(1): Pooling({
'word_embedding_dimension': 2304,
'pooling_mode_cls_token': False,
'pooling_mode_mean_tokens': True,
'pooling_mode_max_tokens': False,
'include_prompt': True
})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference:
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/AraEuroBert-2.1B")
# Run inference
sentences = [
'لاعبة كرة ناعمة ترمي الكرة إلى زميلتها في الفريق',
'شخصان يلعبان كرة البيسبول',
'لاعبين لكرة البيسبول يجلسان على مقعد',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1152]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Citation
If you use this model in your research, please cite the following works:
@misc{boizard2025eurobertscalingmultilingualencoders,
title={EuroBERT: Scaling Multilingual Encoders for European Languages},
author={Nicolas Boizard and Hippolyte Gisserot-Boukhlef and Duarte M. Alves and André Martins and Ayoub Hammal and Caio Corro and Céline Hudelot and Emmanuel Malherbe and Etienne Malaboeuf and Fanny Jourdan and Gabriel Hautreux and João Alves and Kevin El-Haddad and Manuel Faysse and Maxime Peyrard and Nuno M. Guerreiro and Patrick Fernandes and Ricardo Rei and Pierre Colombo},
year={2025},
eprint={2503.05500},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.05500},
}
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 23
Model tree for Omartificial-Intelligence-Space/AraEuroBert-2.1B
Base model
EuroBERT/EuroBERT-2.1BCollection including Omartificial-Intelligence-Space/AraEuroBert-2.1B
Evaluation results
- Pearson Cosine on sts dev 2304self-reported0.727
- Spearman Cosine on sts dev 2304self-reported0.730
- Pearson Cosine on sts dev 1152self-reported0.727
- Spearman Cosine on sts dev 1152self-reported0.730
- Pearson Cosine on sts dev 960self-reported0.726
- Spearman Cosine on sts dev 960self-reported0.730
- Pearson Cosine on sts dev 580self-reported0.725
- Spearman Cosine on sts dev 580self-reported0.729