Omartificial-Intelligence-Space's picture
update readme.md
79abc35 verified
metadata
base_model: aubmindlab/bert-base-arabertv02
datasets:
  - akhooli/arabic-triplets-1m-curated-sims-len
language:
  - ar
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - transformers.js
  - transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:75000
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
  - mteb
model-index:
  - name: Omartificial-Intelligence-Space/Arabert-matro-v4
    results:
      - dataset:
          config: ar-ar
          name: MTEB STS17 (ar-ar)
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_pearson
            value: 84.66883392015258
          - type: cosine_spearman
            value: 85.30520907141938
          - type: euclidean_pearson
            value: 82.04306779342852
          - type: euclidean_spearman
            value: 84.58744201847996
          - type: main_score
            value: 85.30520907141938
          - type: manhattan_pearson
            value: 82.08829357724328
          - type: manhattan_spearman
            value: 84.49254541383544
        task:
          type: STS
license: apache-2.0

Arabic-Triplet-Matryoshka-V2-Model

## Citation

If you use the Arabic Matryoshka Embeddings Model, please cite it as follows:

@misc{nacar2024enhancingsemanticsimilarityunderstanding,
      title={Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning}, 
      author={Omer Nacar and Anis Koubaa},
      year={2024},
      eprint={2407.21139},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.21139}, 
}