GATE-AraBert-V1

This is GATE | General Arabic Text Embedding trained using SentenceTransformers in a multi-task setup. The system trains on the AllNLI and on the STS dataset.

Model Details

Model Description

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/GATE-AraBert-v1")
# Run inference
sentences = [
    'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
    'لقد مات الكلب',
    'شخص طويل القامة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8391
spearman_cosine 0.841
pearson_manhattan 0.8277
spearman_manhattan 0.8361
pearson_euclidean 0.8274
spearman_euclidean 0.8358
pearson_dot 0.8154
spearman_dot 0.818
pearson_max 0.8391
spearman_max 0.841

Semantic Similarity

Metric Value
pearson_cosine 0.813
spearman_cosine 0.8173
pearson_manhattan 0.8114
spearman_manhattan 0.8164
pearson_euclidean 0.8103
spearman_euclidean 0.8158
pearson_dot 0.7908
spearman_dot 0.7887
pearson_max 0.813
spearman_max 0.8173

Acknowledgments

The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.

## Citation

If you use the GATE, please cite it as follows:

@misc{nacar2025GATE,
      title={GATE: General Arabic Text Embedding for Enhanced Semantic Textual Similarity with Hybrid Loss Training}, 
      author={Omer Nacar, Anis Koubaa, Serry Taiseer Sibaee and Lahouari Ghouti},
      year={2025},
      note={Submitted to COLING 2025},
      url={https://huggingface.co/Omartificial-Intelligence-Space/GATE-AraBert-v1},
}

Downloads last month
1,986
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Omartificial-Intelligence-Space/GATE-AraBert-v1

Datasets used to train Omartificial-Intelligence-Space/GATE-AraBert-v1

Space using Omartificial-Intelligence-Space/GATE-AraBert-v1 1

Collection including Omartificial-Intelligence-Space/GATE-AraBert-v1

Evaluation results

  • ndcg_at_1 on MTEB MIRACLRetrievalHardNegatives (ar)
    self-reported
    48.700
  • ndcg_at_3 on MTEB MIRACLRetrievalHardNegatives (ar)
    self-reported
    51.161
  • ndcg_at_5 on MTEB MIRACLRetrievalHardNegatives (ar)
    self-reported
    53.923
  • ndcg_at_10 on MTEB MIRACLRetrievalHardNegatives (ar)
    self-reported
    57.737
  • ndcg_at_20 on MTEB MIRACLRetrievalHardNegatives (ar)
    self-reported
    60.475
  • ndcg_at_100 on MTEB MIRACLRetrievalHardNegatives (ar)
    self-reported
    63.096
  • ndcg_at_1000 on MTEB MIRACLRetrievalHardNegatives (ar)
    self-reported
    64.203
  • map_at_1 on MTEB MIRACLRetrievalHardNegatives (ar)
    self-reported
    32.108
  • map_at_3 on MTEB MIRACLRetrievalHardNegatives (ar)
    self-reported
    44.405
  • map_at_5 on MTEB MIRACLRetrievalHardNegatives (ar)
    self-reported
    47.164