InternViT-6B-224px

[πŸ“‚ GitHub] [πŸ“œ InternVL 1.0] [πŸ“œ InternVL 1.5] [πŸ“œ Mini-InternVL] [πŸ“œ InternVL 2.5]

[πŸ†• Blog] [πŸ—¨οΈ Chat Demo] [πŸ€— HF Demo] [πŸš€ Quick Start] [πŸ“– Documents]

image

Model Details

  • Model Type: vision foundation model, feature backbone
  • Model Stats:
    • Params (M): 5903
    • Image size: 224 x 224
  • Pretrain Dataset: LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi
  • Note: This model has 48 blocks, and we found that using the output after the fourth-to-last block worked best for VLLM. Therefore, when building a VLLM with this model, please use the features from the fourth-to-last layer.

Linear Probing Performance

See this document for more details about the linear probing evaluation.

IN-1K IN-ReaL IN-V2 IN-A IN-R IN-Sketch
88.2 90.4 79.9 77.5 89.8 69.1

Model Usage (Image Embeddings)

import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor

model = AutoModel.from_pretrained(
    'OpenGVLab/InternViT-6B-224px',
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).cuda().eval()

image = Image.open('./examples/image1.jpg').convert('RGB')

image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-224px')

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

outputs = model(pixel_values)

Citation

If you find this project useful in your research, please consider citing:

@article{chen2024expanding,
  title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
  author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
  journal={arXiv preprint arXiv:2412.05271},
  year={2024}
}
@article{gao2024mini,
  title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
  author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
  journal={arXiv preprint arXiv:2410.16261},
  year={2024}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
@inproceedings{chen2024internvl,
  title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={24185--24198},
  year={2024}
}
Downloads last month
422
Inference API
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for OpenGVLab/InternViT-6B-224px

Finetunes
1 model
Merges
2 models

Datasets used to train OpenGVLab/InternViT-6B-224px

Collection including OpenGVLab/InternViT-6B-224px