RWKV-Seed-OSS-36B-hxa079 / modeling_rwkv079qwen3.py
OpenMOSE's picture
Upload folder using huggingface_hub
d0551b0 verified
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch RWKV079Qwen3 model.
base code from SmerkyG @ recursal.ai, featherless.ai
hxa079 implementation RWKV079 + NoPE Hybrid Attention
"""
import math
import inspect
from typing import List, Optional, Tuple, Union, Dict, Any
import torch
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, CacheLayerMixin
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import (
GenericForQuestionAnswering,
GenericForSequenceClassification,
GenericForTokenClassification,
GradientCheckpointingLayer,
)
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from transformers.utils.generic import check_model_inputs
from .configuration_rwkv079qwen3 import RWKV079Qwen3Config
from transformers.models.qwen3.modeling_qwen3 import Qwen3DecoderLayer, Qwen3MLP, Qwen3RMSNorm, Qwen3Attention
class RWKV079State():
def __init__(self) -> None:
#super().__init__()
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
self.layer_kv_states: List[torch.Tensor] = []
self.layer_shift_states: List[torch.Tensor] = []
self.cumulative_scores: List[torch.Tensor] = []
self.sin: List[torch.Tensor] = []
self.cos: List[torch.Tensor] = []
def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
sequence length.
"""
if layer_idx < len(self):
return (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __iter__(self):
"""
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
keys and values
"""
for layer_idx in range(len(self)):
yield (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])
def __len__(self):
"""
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
to the number of layers in the model.
"""
return len(self.layer_kv_states)
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
# Linear Attention variants do not have a maximum length
return new_seq_length
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
raise NotImplementedError('Cannot reorder Linear Attention state')
def get_seq_length(self, layer_idx: int = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
return self._seen_tokens
def get_max_cache_shape(self) -> Optional[int]:
"""Returns the maximum sequence length of the cache object. DynamicCache does not have a maximum length."""
return None
def get_max_length(self) -> Optional[int]:
"""
Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length.
"""
return None
def crop(self, max_length: int):
# can't implement this for linear attention variants
return
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
"""Return the length and offset of the cache, used to generate the mask"""
kv_offset = 0
query_length = cache_position.shape[0]
past_seen_tokens = self.get_seq_length()
kv_length = query_length + past_seen_tokens
return kv_length, kv_offset
@property
def is_compileable(self) -> bool:
"""Return whether the cache is compileable"""
return True #all(layer.is_compileable for layer in self.layers)
@torch.no_grad
def update(
self,
kv_state: torch.Tensor,
shift_state: torch.Tensor,
layer_idx: int,
token_count: int = 0,
is_attention_layer: bool = True,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Update the number of seen tokens
if layer_idx == 0:
if is_attention_layer:
token_count = kv_state.size(-2)
self._seen_tokens += token_count
#print(f'self._seen_tokens = {self._seen_tokens} layer_idx = {layer_idx} is_attention_layer = {is_attention_layer} kv_state.size(-2) = {kv_state.size(-2)}')
# Update the cache
if kv_state is not None:
# There may be skipped layers, fill them with empty lists
if layer_idx >= len(self.layer_kv_states):
for _ in range(len(self.layer_kv_states), layer_idx):
if is_attention_layer:
self.layer_kv_states.append(torch.tensor([], dtype=kv_state.dtype, device=kv_state.device)) # acts as key_cache
self.layer_shift_states.append(torch.tensor([], dtype=shift_state.dtype, device=shift_state.device)) # acts as value_cache
else:
self.layer_kv_states.append(torch.zeros_like(kv_state).requires_grad_(False))
self.layer_shift_states.append(torch.zeros_like(shift_state).requires_grad_(False))
self.layer_kv_states.append(kv_state) # acts as key_cache
self.layer_shift_states.append(shift_state) # acts as value_cache
else:
if is_attention_layer:
self.layer_kv_states[layer_idx] = torch.cat([self.layer_kv_states[layer_idx], kv_state], dim=-2) # acts as key_cache
self.layer_shift_states[layer_idx] = torch.cat([self.layer_shift_states[layer_idx], shift_state], dim=-2) # acts as value_cache
else:
self.layer_kv_states[layer_idx].copy_(kv_state)
self.layer_shift_states[layer_idx].copy_(shift_state)
return self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx]
try:
from fla.ops.rwkv7.chunk import chunk_rwkv7
from fla.ops.rwkv7.fused_recurrent import fused_recurrent_rwkv7
except ImportError:
print("Required module is not installed. Please install it using the following commands:")
print("pip install --no-use-pep517 flash-linear-attention")
print("Additionally, ensure you have at least version 2.2.0 of Triton installed:")
print("pip install triton>=2.2.0")
# def is_layer_attention(config, layer_id):
# return layer_id >= config.first_attention_layer and layer_id < config.first_post_attention_layer and (layer_id > min(config.num_hidden_layers, config.last_striping_layer) or (min(config.num_hidden_layers-1, config.last_striping_layer) - layer_id) % config.attention_striping == 0)
def is_layer_attention(config, layer_id):
return layer_id in config.transformer_layers
def repeat_kv_rwkv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
Repeat KV heads along the head dimension (GQA).
Input: (B, T, H_kv, D)
Output: (B, T, H_kv * n_rep, D)
"""
B, T, H_kv, D = hidden_states.shape
if n_rep == 1:
return hidden_states
# Expand head dim
hidden_states = hidden_states[:, :, :, None, :] # (B, T, H_kv, 1, D)
hidden_states = hidden_states.expand(B, T, H_kv, n_rep, D) # (B, T, H_kv, n_rep, D)
return hidden_states.reshape(B, T, H_kv * n_rep, D).contiguous()
def T5RMSNorm(hidden_states,weight,variance_epsilon:float=1e-6):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
return (weight * hidden_states).to(input_dtype)
def compute_qwen3_rope_cache(seq_len, rotary_dim, device, dtype, rope_theta):
half_dim = rotary_dim // 2
freq_seq = torch.arange(half_dim, dtype=dtype, device=device)
inv_freq = 1.0 / (rope_theta ** (freq_seq / half_dim))
positions = torch.arange(seq_len, dtype=dtype, device=device)
freqs = torch.einsum("i,j->ij", positions, inv_freq)
emb = torch.cat([freqs, freqs], dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.unsqueeze(0), sin.unsqueeze(0), inv_freq
# def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
# """Applies Rotary Position Embedding to the query and key tensors.
# Args:
# q (`torch.Tensor`): The query tensor.
# k (`torch.Tensor`): The key tensor.
# cos (`torch.Tensor`): The cosine part of the rotary embedding.
# sin (`torch.Tensor`): The sine part of the rotary embedding.
# position_ids (`torch.Tensor`, *optional*):
# Deprecated and unused.
# unsqueeze_dim (`int`, *optional*, defaults to 1):
# The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
# sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
# that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
# k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
# cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
# the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
# Returns:
# `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
# """
# cos = cos.unsqueeze(unsqueeze_dim)
# sin = sin.unsqueeze(unsqueeze_dim)
# q_embed = (q * cos) + (rotate_half(q) * sin)
# k_embed = (k * cos) + (rotate_half(k) * sin)
# return q_embed, k_embed
class Qwen3RotaryEmbedding(nn.Module):
def __init__(self, config: RWKV079Qwen3Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rms_norm(hidden_states, eps = 1e-6):
#print('ugyuugyu')
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + eps)
return hidden_states.to(input_dtype)
def generate_rotary_embedding(max_seqlen:int, dim:int, theta:float = 10000.0, scale:float = 1):
#inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float).to(device) / dim))
angular_velocity = theta ** -(torch.arange(0, dim, 2, dtype=torch.float) / dim) / scale # frequencies from 1.0 ... 1/theta
angles = torch.outer(torch.arange(max_seqlen), angular_velocity)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((angles, angles), dim=-1)
return torch.stack([emb.cos(), emb.sin()], dim=0)
#return torch.polar(torch.ones_like(angles), angles)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def apply_rotary_pos_emb_single(x, cos, sin, unsqueeze_dim=1):
return (x * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(x) * sin.unsqueeze(unsqueeze_dim))
from typing import Callable, Optional, Tuple, Union
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = attn_weights.masked_fill(attn_weights.isnan(), 0) # IMPORTANT FOR BATCHED INFERENCE IN LM EVAL!
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
from torch.nn.attention.flex_attention import create_block_mask, flex_attention, create_mask
from functools import lru_cache
block_mask = None
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0,
is_causal=False, scale=None, enable_gqa=False) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias = attn_mask + attn_bias
if enable_gqa:
key = key.repeat_interleave(query.size(-3)//key.size(-3), -3)
value = value.repeat_interleave(query.size(-3)//value.size(-3), -3)
attn_weight = query.float() @ key.float().transpose(-2, -1) * scale_factor
attn_weight += attn_bias.float()
#attn_weight = stable_softmax(attn_weight, dim=-1)
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = attn_weight.masked_fill(attn_weight.isnan(), 0) # IMPORTANT FOR BATCHED INFERENCE IN LM EVAL!
#attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value.float()
class Qwen3AttentionNoPE_Causal(Qwen3Attention):
def forward(
self,
hidden_states: torch.Tensor,
frozen_residual: torch.Tensor,
v_first: Optional[torch.Tensor] = None,
k_first: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
x = hidden_states
B, L, D = x.size()
input_shape = x.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
q = self.q_proj(x).view(hidden_shape).transpose(1, 2)
k = self.k_proj(x).view(hidden_shape).transpose(1, 2)
v = self.v_proj(x).view(hidden_shape).transpose(1, 2)
if past_key_values is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"cache_position": cache_position}
k, v = past_key_values.update(k, v, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
k = repeat_kv(k, self.num_key_value_groups)
v = repeat_kv(v, self.num_key_value_groups)
S = k.size(-2)
y = nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, attn_mask=attention_mask, is_causal=attention_mask is None and L==S)
y = y.transpose(1,2)
y = y.reshape(*input_shape, -1)#.contiguous()
y = self.o_proj(y)
attn_weights = None
return y, v_first, k_first
class RWKV079Attention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
C = self.hidden_size = config.hidden_size
H = self.num_heads = config.num_attention_heads
H_kv = config.num_key_value_heads
N = self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.attention_dropout = config.attention_dropout
if self.hidden_size % self.num_heads != 0:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.receptance = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.key = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.value = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.output = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
#self.r_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
#self.k_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape
lora_rank_decay = config.lora_rank_decay
lora_rank_iclr = config.lora_rank_iclr
lora_rank_value_residual_mix = config.lora_rank_value_residual_mix
lora_rank_key_residual_mix = config.lora_rank_key_residual_mix
lora_rank_gate = config.lora_rank_gate
print(f"lora_rank_value_residual_mix = {lora_rank_value_residual_mix} lora_rank_key_residual_mix={lora_rank_key_residual_mix}")
self.w0 = nn.Parameter(torch.empty(1,1,H*N))
self.w1 = nn.Parameter(torch.empty(C, lora_rank_decay))
self.w2 = nn.Parameter(torch.empty(lora_rank_decay, H*N))
self.a0 = nn.Parameter(torch.empty(1,1,H*N))
self.a1 = nn.Parameter(torch.empty(C, lora_rank_iclr))
self.a2 = nn.Parameter(torch.empty(lora_rank_iclr, H*N))
#if layer_idx > 0:
self.v0 = nn.Parameter(torch.empty(1,1,H_kv*N))
self.v1 = nn.Parameter(torch.empty(C, lora_rank_value_residual_mix))
self.v2 = nn.Parameter(torch.empty(lora_rank_value_residual_mix, H_kv*N))
self.k0 = nn.Parameter(torch.empty(1,1,H_kv*N))
self.k1 = nn.Parameter(torch.empty(C, lora_rank_key_residual_mix))
self.k2 = nn.Parameter(torch.empty(lora_rank_key_residual_mix, H_kv*N))
self.g1 = nn.Parameter(torch.empty(C, lora_rank_gate))
self.g2 = nn.Parameter(torch.empty(lora_rank_gate, H*N))
self.r_k = nn.Parameter(torch.empty(H,N))
def forward(
self,
hidden_states: torch.Tensor,
frozen_residual: torch.Tensor,
v_first: Optional[torch.Tensor] = None,
k_first: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[RWKV079State] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
):
if attention_mask is not None:
assert len(attention_mask.shape) in (2, 4)
output_shift_state = hidden_states[:, -1:].detach().clone()
x = hidden_states
B, T, C = hidden_states.shape
H = self.num_heads
N = self.head_dim
q_len = T
if use_cache and past_key_values is not None and len(past_key_values) > self.layer_idx:
#print(f'use past state layer {self.layer_idx}')
input_vk_state, input_shift_state = past_key_values[self.layer_idx]
else:
input_vk_state, input_shift_state = torch.zeros(B,H,N,N, dtype=torch.bfloat16,device=x.device), torch.zeros_like(x[:, -1:])
xr = xw = xk = xv = xa = xg = x
r = self.receptance(xr).view(B,T,-1,N)
w = -F.softplus(-(self.w0 + torch.tanh(xw @ self.w1) @ self.w2)) -0.5
k = self.key(xk).view(B,T,-1,N)
v = self.value(xv).view(B,T,-1,N)
a = torch.sigmoid(self.a0 + (xa @ self.a1) @ self.a2)
g = torch.sigmoid(xg @ self.g1) @ self.g2
if position_embeddings is not None:
cos, sin = position_embeddings
r, k = apply_rotary_pos_emb(r, k, cos, sin, unsqueeze_dim=2)
if self.layer_idx == 0:
v_first = v # store the v of the first layer
k_first = k # store the k of the first layer
else:
v = v + (v_first - v) * torch.sigmoid(self.v0 + (x @ self.v1) @ self.v2).view(B,T,self.num_key_value_heads,-1) # add value residual
k = k + (k_first - k) * torch.sigmoid(self.k0 + (x @ self.k1) @ self.k2).view(B,T,self.num_key_value_heads,-1) # add key residual
# dealing with left-padding
# if attention_mask is not None:
# if len(attention_mask.shape) == 2:
# v = v * attention_mask[:, -v.shape[-2]:, None]
# elif len(attention_mask.shape) == 4:
# v = v * attention_mask[:, -1, -1, -v.shape[-2]:].view(B, T, 1)
# #v = v * attention_mask[:, :, -1, -v.shape[-2]:, None]
if attention_mask is not None:
if attention_mask is not None:
if attention_mask.ndim == 2:
# [B, S]
mask = attention_mask[:, -T:] # [B, T]
v = v * mask[:, :, None, None] # → [B, T, 1, 1] に拡張して掛け算
elif attention_mask.ndim == 4:
# [B, 1, L, S]
mask = attention_mask[:, 0, -1, -T:] # [B, T]
v = v * mask[:, :, None, None] # 同上
# repeat k/v heads if n_kv_heads < n_heads
# k = k.view(B, T, -1, 1, self.head_dim).expand(-1, -1, -1, self.num_key_value_groups, -1).reshape(B, T, -1)
# v = v.view(B, T, -1, 1, self.head_dim).expand(-1, -1, -1, self.num_key_value_groups, -1).reshape(B, T, -1)
k = repeat_kv_rwkv(k, self.num_key_value_groups).view(B, T, -1)
v = repeat_kv_rwkv(v, self.num_key_value_groups).view(B, T, -1)
dropout_rate = 0.0 if not self.training else self.attention_dropout
kk = F.normalize(k.view(B,T,H,-1), dim=-1, p=2.0).view(B,T,-1)
k = k * (1.0 - w + a)
aa = -kk
bb = kk * a
w = -w.exp()
r_,w_,k_,v_,aa_,bb_ = [i.view(B,T,H,N) for i in [r,w,k,v,aa,bb]]
#print(f'r shape = {r_.shape}')
# if self.layer_idx == 0:
# print(f'input_vk_state sum = {torch.sum(input_vk_state)}')
#x, output_vk_state = fused_recurrent_rwkv7(r_, w_, k_, v_, aa_, bb_, initial_state=input_vk_state, output_final_state=use_cache)
x, output_vk_state = fused_recurrent_rwkv7(r_, w_, k_, v_, aa_, bb_, scale=1.0, initial_state=input_vk_state, output_final_state=True, head_first=False)
# if self.layer_idx == 0:
# print(f'output_vk_state sum = {torch.sum(output_vk_state)}')
x = x.view(B,T,-1) * (float(N) ** -0.5)
x = x + ((r.view(B,T,H,-1)*k.view(B,T,H,-1)*self.r_k).sum(dim=-1, keepdim=True) * v.view(B,T,H,-1)).view(B,T,-1)
x = x * g
x = self.output(x)
if past_key_values is not None:
past_key_values.update(output_vk_state, output_shift_state, self.layer_idx, q_len, is_layer_attention(self.config, self.layer_idx))
return x, v_first, k_first
class RWKV079Qwen3DecoderLayer(nn.Module):
def __init__(self, config: RWKV079Qwen3Config, layer_idx: int):
nn.Module.__init__(self)
self.hidden_size = config.hidden_size
self.layer_idx = layer_idx
if is_layer_attention(config, layer_idx):
print(f'layer {layer_idx} : attention')
att_fn = Qwen3AttentionNoPE_Causal #Qwen3KeyQuant #Qwen3SWAPrefill #Qwen3DropoutSWASink #Qwen3AttentionNoPE #Qwen3MOBA #Qwen3AttentionVerticalSparse # Qwen3DoubleAttention # Qwen3SymPow #Qwen3Chunk #Qwen3Power #Qwen3MOBA #Qwen3Attention # Qwen3NewAttention # Qwen3AttentionAdapted
else:
print(f'layer {layer_idx} : rwkv')
att_fn = RWKV079Attention
self.self_attn = att_fn(config, layer_idx)
self.mlp = Qwen3MLP(config)
self.input_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attention_type = config.layer_types[layer_idx]
def forward(
self,
hidden_states: torch.Tensor,
frozen_residual: torch.Tensor,
v_first: Optional[torch.Tensor],
k_first: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, v_first, k_first = self.self_attn(
hidden_states=hidden_states,
frozen_residual=frozen_residual,
v_first=v_first,
k_first=k_first,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
#is_causal=True,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, v_first,k_first,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
@auto_docstring
class RWKV079Qwen3PreTrainedModel(PreTrainedModel):
config: RWKV079Qwen3Config
config_class = RWKV079Qwen3Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["RWKV079Qwen3DecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
# def _init_weights(self, module):
# std = self.config.initializer_range
# if isinstance(module, nn.Linear):
# module.weight.data.normal_(mean=0.0, std=std)
# if module.bias is not None:
# module.bias.data.zero_()
# elif isinstance(module, nn.Embedding):
# module.weight.data.normal_(mean=0.0, std=std)
# if module.padding_idx is not None:
# module.weight.data[module.padding_idx].zero_()
@auto_docstring
class RWKV079Qwen3Model(RWKV079Qwen3PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen3DecoderLayer`]
Args:
config: RWKV079Qwen3Config
"""
def __init__(self, config: RWKV079Qwen3Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[RWKV079Qwen3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Qwen3RotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.has_sliding_layers = "sliding_attention" in self.config.layer_types
# Initialize weights and apply final processing
self.post_init()
#@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and not isinstance(past_key_values, RWKV079State):
past_key_values = RWKV079State()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# It may already have been prepared by e.g. `generate`
if not isinstance(causal_mask_mapping := attention_mask, dict):
# Prepare mask arguments
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values,
"position_ids": position_ids,
}
# Create the masks
causal_mask_mapping = {
"full_attention": create_causal_mask(**mask_kwargs),
}
# The sliding window alternating layers are not always activated depending on the config
if self.has_sliding_layers:
causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
if self.config.use_rope:
position_embeddings = self.rotary_emb(hidden_states, position_ids)
else:
position_embeddings = None
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
v_first = None
k_first = None
frozen_residual = None
for decoder_layer in self.layers:
if not is_layer_attention(self.config, decoder_layer.layer_idx):
frozen_residual = hidden_states#rms_norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
attention_mask = causal_mask_mapping[decoder_layer.attention_type]
if attention_mask is not None and attention_mask.ndim == 1:
attention_mask = None
#attention_mask = None
layer_outputs = decoder_layer(
hidden_states,
frozen_residual=frozen_residual,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
v_first=v_first,
k_first=k_first
)
hidden_states = layer_outputs[0]
v_first = layer_outputs[1]
k_first = layer_outputs[2]
if output_attentions:
all_self_attns += (layer_outputs[2],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
#if return_legacy_cache:
# next_cache = next_cache.to_legacy_cache()
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class RWKV079Qwen3ForCausalLM(RWKV079Qwen3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = RWKV079Qwen3Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, RWKV079Qwen3ForCausalLM
>>> model = RWKV079Qwen3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
# # run the prefill only up to the last token, then run one more for the actual result
# # we do this so that called code doesn't have to handle the dichotomy specially and can just check for L==1
# for i in range(2):
# all_but_one = max(1, input_ids.size(-1)-1)
# iid = input_ids[..., i*all_but_one:(i+1)*all_but_one]
# if iid.size(-1) == 0:
# continue
# pids = position_ids
# if pids is not None:
# pids = position_ids[..., i*all_but_one:(i+1)*all_but_one]
# cp = cache_position
# if cp is not None:
# cp = cache_position[..., i*all_but_one:(i+1)*all_but_one]
# rv = self.forward_inner(iid, attention_mask=attention_mask, position_ids=pids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cp, num_logits_to_keep=num_logits_to_keep, **loss_kwargs)
# past_key_values = rv.past_key_values
# return rv
# def forward_inner(
# self,
# input_ids: torch.LongTensor = None,
# attention_mask: Optional[torch.Tensor] = None,
# position_ids: Optional[torch.LongTensor] = None,
# past_key_values: Optional[List[torch.FloatTensor]] = None,
# inputs_embeds: Optional[torch.FloatTensor] = None,
# labels: Optional[torch.LongTensor] = None,
# use_cache: Optional[bool] = None,
# output_attentions: Optional[bool] = None,
# output_hidden_states: Optional[bool] = None,
# cache_position: Optional[torch.LongTensor] = None,
# num_logits_to_keep: int = 0,
# **loss_kwargs,
# ) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **loss_kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@auto_docstring
class RWKV079Qwen3ForSequenceClassification(RWKV079Qwen3PreTrainedModel):
pass
@auto_docstring
class RWKV079Qwen3ForTokenClassification(RWKV079Qwen3PreTrainedModel):
pass
@auto_docstring
class RWKV079Qwen3ForQuestionAnswering(RWKV079Qwen3PreTrainedModel):
base_model_prefix = "transformer" # For BC, where `transformer` was used instead of `model`