|
--- |
|
license: mit |
|
license_link: https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE |
|
base_model: |
|
- microsoft/phi-4 |
|
base_model_relation: quantized |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- phi |
|
- nlp |
|
- math |
|
- code |
|
- chat |
|
- conversational |
|
library_name: transformers |
|
--- |
|
|
|
# phi-4-int8-ov |
|
* Model creator: [microsoft](https://huggingface.co/microsoft) |
|
* Original model: [phi-4](https://huggingface.co/microsoft/phi-4) |
|
|
|
## Description |
|
This is [phi-4](https://huggingface.co/microsoft/phi-4) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf). |
|
|
|
## Quantization Parameters |
|
|
|
Weight compression was performed using `nncf.compress_weights` with the following parameters: |
|
|
|
* mode: **INT8_ASYM** |
|
|
|
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html). |
|
|
|
## Compatibility |
|
|
|
The provided OpenVINO™ IR model is compatible with: |
|
|
|
* OpenVINO version 2025.1.0 and higher |
|
* Optimum Intel 1.24.0 and higher |
|
|
|
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) |
|
|
|
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: |
|
|
|
``` |
|
pip install optimum[openvino] |
|
``` |
|
|
|
2. Run model inference: |
|
|
|
``` |
|
from transformers import AutoTokenizer |
|
from optimum.intel.openvino import OVModelForCausalLM |
|
|
|
model_id = "OpenVINO/phi-4-int8-ov" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = OVModelForCausalLM.from_pretrained(model_id) |
|
|
|
inputs = tokenizer("What is OpenVINO?", return_tensors="pt") |
|
|
|
outputs = model.generate(**inputs, max_length=200) |
|
text = tokenizer.batch_decode(outputs)[0] |
|
print(text) |
|
``` |
|
|
|
For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html). |
|
|
|
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) |
|
|
|
|
|
1. Install packages required for using OpenVINO GenAI. |
|
``` |
|
pip install openvino-genai huggingface_hub |
|
``` |
|
|
|
2. Download model from HuggingFace Hub |
|
|
|
``` |
|
import huggingface_hub as hf_hub |
|
|
|
model_id = "OpenVINO/phi-4-int8-ov" |
|
model_path = "phi-4-int8-ov" |
|
|
|
hf_hub.snapshot_download(model_id, local_dir=model_path) |
|
|
|
``` |
|
|
|
3. Run model inference: |
|
|
|
``` |
|
import openvino_genai as ov_genai |
|
|
|
device = "CPU" |
|
pipe = ov_genai.LLMPipeline(model_path, device) |
|
print(pipe.generate("What is OpenVINO?", max_length=200)) |
|
``` |
|
|
|
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) |
|
|
|
You can find more detaild usage examples in OpenVINO Notebooks: |
|
|
|
- [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM) |
|
- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation) |
|
|
|
## Limitations |
|
|
|
Check the original [model card](https://huggingface.co/microsoft/phi-4) for limitations. |
|
|
|
## Legal information |
|
|
|
The original model is distributed under [mit](https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE) license. More details can be found in [phi-4](https://huggingface.co/microsoft/phi-4). |
|
|
|
## Disclaimer |
|
|
|
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights. |
|
|