馃 Model Overview

This is a quantized variant of the Mistral 7B (small) model using LLM.int8() quantization via bitsandbytes. It reduces memory footprint while maintaining high-generation quality鈥攊deal for single-GPU inference, research benchmarks, and lightweight downstream applications.

馃敡 Model Specs

  • Total Parameters: ~7 Billion
  • Precision: INT8 with FP32 CPU offload
  • Quantization Threshold: 6.0
  • Device Map: Auto (compatible with CUDA / CPU offloading)
  • Tokenizer: Byte-level BPE

馃殌 Usage Example

from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

model_id = "ParveshRawal/mistral-small-int8"
tokenizer = AutoTokenizer.from_pretrained(model_id)
quant_config = BitsAndBytesConfig(
    load_in_8bit=True,
    llm_int8_threshold=6.0,
    llm_int8_enable_fp32_cpu_offload=True
)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    quantization_config=quant_config
)

inputs = tokenizer("Tell me something about IndiaAI.", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
7
Safetensors
Model size
7.24B params
Tensor type
F32
F16
I8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for Parveshiiii/mistral-small-int8

Quantized
(21)
this model