whisper-tiny-aug-19-april-lightning-v1
This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1330
- Wer: 85.8714
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.0683 | 1.0 | 712 | 0.4517 | 100.8319 |
0.3469 | 2.0 | 1424 | 0.2621 | 97.0808 |
0.24 | 3.0 | 2136 | 0.2112 | 94.0364 |
0.1958 | 4.0 | 2848 | 0.1838 | 91.4772 |
0.1692 | 5.0 | 3560 | 0.1672 | 90.0219 |
0.1506 | 6.0 | 4272 | 0.1565 | 90.5312 |
0.1367 | 7.0 | 4984 | 0.1479 | 88.0180 |
0.1252 | 8.0 | 5696 | 0.1422 | 88.6304 |
0.1162 | 9.0 | 6408 | 0.1372 | 85.7419 |
0.1085 | 10.0 | 7120 | 0.1330 | 85.8714 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.2.1+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 27
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PhanithLIM/whisper-tiny-aug-19-april-lightning-v1
Base model
openai/whisper-tiny