|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- XiuAiMoon/VITON-HD |
|
- JianhaoZeng/Dresscode |
|
base_model: |
|
- davidelobba/TEMU-VTOFF |
|
- stabilityai/stable-diffusion-3.5-large |
|
- Qwen/Qwen2.5-VL-7B-Instruct |
|
pipeline_tag: image-to-image |
|
--- |
|
Please give me a star(🌟) |
|
|
|
https://github.com/Phoenix-95107/Virtual_Try_Off |
|
|
|
|
|
# TEMU-VTOFF: Virtual Try-Off & Fashion Understanding Toolkit |
|
TEMU-VTOFF is a state-of-the-art toolkit for virtual try-off and fashion image understanding. It leverages advanced diffusion models, vision-language models, and semantic segmentation to enable garment transfer, attribute captioning, and mask generation for fashion images. |
|
<img src="./assets/teaser.png" alt="example"> |
|
## Table of Contents |
|
|
|
- [Features](#features) |
|
- [Installation](#installation) |
|
- [Quick Start](#quick-start) |
|
- [Core Components](#core-components) |
|
- [1. Inference Pipeline (`inference.py`)](#1-inference-pipeline-inferencepy) |
|
- [2. Visual Attribute Captioning (`precompute_utils/captioning_qwen.py`)](#2-visual-attribute-captioning-precompute_utilscaptioning_qwenpy) |
|
- [3. Clothing Segmentation (`SegCloth.py`)](#3-clothing-segmentation-segclothpy) |
|
- [Examples](#examples) |
|
- [Citation](#citation) |
|
- [License](#license) |
|
|
|
--- |
|
|
|
## Features |
|
|
|
- **Virtual Try-On**: Generate realistic try-on images using Stable Diffusion 3-based pipelines. |
|
- **Visual Attribute Captioning**: Extract fine-grained garment attributes using Qwen-VL. |
|
- **Clothing Segmentation**: Obtain binary and fine masks for garments using SegFormer. |
|
- **Dataset Support**: Works with DressCode and VITON-HD datasets. |
|
|
|
--- |
|
|
|
## Installation |
|
|
|
1. **Clone the repository:** |
|
|
|
```bash |
|
git clone https://github.com/yourusername/TEMU-VTOFF.git |
|
cd TEMU-VTOFF |
|
``` |
|
|
|
2. **Install dependencies:** |
|
|
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
3. **(Optional) Setup virtual environment:** |
|
```bash |
|
python -m venv venv |
|
source venv/bin/activate # On Windows: venv\Scripts\activate |
|
``` |
|
|
|
--- |
|
|
|
## Quick Start |
|
|
|
### 1. Virtual Try-On Inference |
|
|
|
```bash |
|
python inference.py \ |
|
--pretrained_model_name_or_path <path/to/model> \ |
|
--pretrained_model_name_or_path_sd3_tryoff <path/to/tryoff/model> \ |
|
--example_image examples/example1.jpg \ |
|
--output_dir outputs \ |
|
--width 768 --height 1024 \ |
|
--guidance_scale 2.0 \ |
|
--num_inference_steps 28 \ |
|
--category upper_body |
|
``` |
|
|
|
### 2. Visual Attribute Captioning |
|
|
|
```bash |
|
python precompute_utils/captioning_qwen.py \ |
|
--pretrained_model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ |
|
--image_path examples/example1.jpg \ |
|
--output_path outputs/example1_caption.txt \ |
|
--image_category upper_body |
|
``` |
|
|
|
### 3. Clothing Segmentation |
|
|
|
```python |
|
from PIL import Image |
|
from SegCloth import segment_clothing |
|
|
|
img = Image.open("examples/example1.jpg") |
|
binary_mask, fine_mask = segment_clothing(img, category="upper_body") |
|
binary_mask.save("outputs/example1_binary_mask.jpg") |
|
fine_mask.save("outputs/example1_fine_mask.jpg") |
|
``` |
|
|
|
--- |
|
|
|
## Core Components |
|
|
|
### 1. Inference Pipeline (`inference.py`) |
|
|
|
- **Purpose**: Generates virtual try-on images using a Stable Diffusion 3-based pipeline. |
|
- **How it works**: |
|
- Loads pretrained models (VAE, transformers, schedulers, encoders). |
|
- Segments the clothing region using `SegCloth.py`. |
|
- Generates a descriptive caption for the garment using Qwen-VL (`captioning_qwen.py`). |
|
- Runs the diffusion pipeline to synthesize a new try-on image. |
|
- **Key Arguments**: |
|
- `--pretrained_model_name_or_path`: Path or HuggingFace model ID for the main model. |
|
- `--pretrained_model_name_or_path_sd3_tryoff`: Path or ID for the try-off transformer. |
|
- `--example_image`: Input image path. |
|
- `--output_dir`: Output directory. |
|
- `--category`: Clothing category (`upper_body`, `lower_body`, `dresses`). |
|
- `--width`, `--height`: Output image size. |
|
- `--guidance_scale`, `--num_inference_steps`: Generation parameters. |
|
|
|
### 2. Visual Attribute Captioning (`precompute_utils/captioning_qwen.py`) |
|
|
|
- **Purpose**: Generates fine-grained, structured captions for fashion images using Qwen2.5-VL. |
|
- **How it works**: |
|
- Loads the Qwen2.5-VL model and processor. |
|
- For a given image, predicts garment attributes (e.g., type, fit, hem, neckline) in a controlled, structured format. |
|
- Can process single images or entire datasets (DressCode, VITON-HD). |
|
- **Key Arguments**: |
|
- `--pretrained_model_name_or_path`: Path or HuggingFace model ID for Qwen2.5-VL. |
|
- `--image_path`: Path to a single image (for single-image captioning). |
|
- `--output_path`: Where to save the generated caption. |
|
- `--image_category`: Garment category (`upper_body`, `lower_body`, `dresses`). |
|
- For batch/dataset mode: `--dataset_name`, `--dataset_root`, `--filename`. |
|
|
|
### 3. Clothing Segmentation (`SegCloth.py`) |
|
|
|
- **Purpose**: Segments clothing regions in images, producing: |
|
- A binary mask (black & white) of the garment. |
|
- A fine mask image where the garment is grayed out. |
|
- **How it works**: |
|
- Uses a SegFormer model (`mattmdjaga/segformer_b2_clothes`) via HuggingFace `transformers` pipeline. |
|
- Supports categories: `upper_body`, `dresses`, `lower_body`. |
|
- Provides both single-image and batch processing functions. |
|
- **Usage**: |
|
- `segment_clothing(img, category)`: Returns `(binary_mask, fine_mask)` for a PIL image. |
|
- `batch_segment_clothing(img_dir, out_dir)`: Processes all images in a directory. |
|
|
|
--- |
|
|
|
## Examples |
|
|
|
See the `examples/` directory for sample images, masks and captions. Example usage scripts are provided for each core component. |
|
Here is the workflow of this model and a comparison of its results with other models. |
|
**Workflow |
|
<img src="./assets/workflow.png" alt="Workflow" /> |
|
**Compair |
|
<img src="./assets/compair.png" alt="compair" /> |
|
--- |
|
|
|
## Citation |
|
|
|
If you use TEMU-VTOFF in your research or product, please cite this repository and the relevant models (e.g., Stable Diffusion 3, Qwen2.5-VL, SegFormer). |
|
|
|
``` |
|
@misc{temu-vtoff, |
|
author = {Your Name or Organization}, |
|
title = {TEMU-VTOFF: Virtual Try-On & Fashion Understanding Toolkit}, |
|
year = {2024}, |
|
howpublished = {\url{https://github.com/yourusername/TEMU-VTOFF}} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
## License |
|
|
|
This project is licensed under the [LICENSE](LICENSE) provided in the repository. Please check individual model and dataset licenses for additional terms. |