|
# TEMU-VTOFF: Virtual Try-Off & Fashion Understanding Toolkit
|
|
TEMU-VTOFF is a state-of-the-art toolkit for virtual try-off and fashion image understanding. It leverages advanced diffusion models, vision-language models, and semantic segmentation to enable garment transfer, attribute captioning, and mask generation for fashion images.
|
|
<img src="./assets/teaser.png" alt="example">
|
|
## Table of Contents
|
|
|
|
- [Features](#features)
|
|
- [Installation](#installation)
|
|
- [Quick Start](#quick-start)
|
|
- [Core Components](#core-components)
|
|
- [1. Inference Pipeline (`inference.py`)](#1-inference-pipeline-inferencepy)
|
|
- [2. Visual Attribute Captioning (`precompute_utils/captioning_qwen.py`)](#2-visual-attribute-captioning-precompute_utilscaptioning_qwenpy)
|
|
- [3. Clothing Segmentation (`SegCloth.py`)](#3-clothing-segmentation-segclothpy)
|
|
- [Examples](#examples)
|
|
- [Citation](#citation)
|
|
- [License](#license)
|
|
|
|
---
|
|
|
|
## Features
|
|
|
|
- **Virtual Try-On**: Generate realistic try-on images using Stable Diffusion 3-based pipelines.
|
|
- **Visual Attribute Captioning**: Extract fine-grained garment attributes using Qwen-VL.
|
|
- **Clothing Segmentation**: Obtain binary and fine masks for garments using SegFormer.
|
|
- **Dataset Support**: Works with DressCode and VITON-HD datasets.
|
|
|
|
---
|
|
|
|
## Installation
|
|
|
|
1. **Clone the repository:**
|
|
|
|
```bash
|
|
git clone https://github.com/yourusername/TEMU-VTOFF.git
|
|
cd TEMU-VTOFF
|
|
```
|
|
|
|
2. **Install dependencies:**
|
|
|
|
```bash
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
3. **(Optional) Setup virtual environment:**
|
|
```bash
|
|
python -m venv venv
|
|
source venv/bin/activate # On Windows: venv\Scripts\activate
|
|
```
|
|
|
|
---
|
|
|
|
## Quick Start
|
|
|
|
### 1. Virtual Try-On Inference
|
|
|
|
```bash
|
|
python inference.py \
|
|
--pretrained_model_name_or_path <path/to/model> \
|
|
--pretrained_model_name_or_path_sd3_tryoff <path/to/tryoff/model> \
|
|
--example_image examples/example1.jpg \
|
|
--output_dir outputs \
|
|
--width 768 --height 1024 \
|
|
--guidance_scale 2.0 \
|
|
--num_inference_steps 28 \
|
|
--category upper_body
|
|
```
|
|
|
|
### 2. Visual Attribute Captioning
|
|
|
|
```bash
|
|
python precompute_utils/captioning_qwen.py \
|
|
--pretrained_model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
|
|
--image_path examples/example1.jpg \
|
|
--output_path outputs/example1_caption.txt \
|
|
--image_category upper_body
|
|
```
|
|
|
|
### 3. Clothing Segmentation
|
|
|
|
```python
|
|
from PIL import Image
|
|
from SegCloth import segment_clothing
|
|
|
|
img = Image.open("examples/example1.jpg")
|
|
binary_mask, fine_mask = segment_clothing(img, category="upper_body")
|
|
binary_mask.save("outputs/example1_binary_mask.jpg")
|
|
fine_mask.save("outputs/example1_fine_mask.jpg")
|
|
```
|
|
|
|
---
|
|
|
|
## Core Components
|
|
|
|
### 1. Inference Pipeline (`inference.py`)
|
|
|
|
- **Purpose**: Generates virtual try-on images using a Stable Diffusion 3-based pipeline.
|
|
- **How it works**:
|
|
- Loads pretrained models (VAE, transformers, schedulers, encoders).
|
|
- Segments the clothing region using `SegCloth.py`.
|
|
- Generates a descriptive caption for the garment using Qwen-VL (`captioning_qwen.py`).
|
|
- Runs the diffusion pipeline to synthesize a new try-on image.
|
|
- **Key Arguments**:
|
|
- `--pretrained_model_name_or_path`: Path or HuggingFace model ID for the main model.
|
|
- `--pretrained_model_name_or_path_sd3_tryoff`: Path or ID for the try-off transformer.
|
|
- `--example_image`: Input image path.
|
|
- `--output_dir`: Output directory.
|
|
- `--category`: Clothing category (`upper_body`, `lower_body`, `dresses`).
|
|
- `--width`, `--height`: Output image size.
|
|
- `--guidance_scale`, `--num_inference_steps`: Generation parameters.
|
|
|
|
### 2. Visual Attribute Captioning (`precompute_utils/captioning_qwen.py`)
|
|
|
|
- **Purpose**: Generates fine-grained, structured captions for fashion images using Qwen2.5-VL.
|
|
- **How it works**:
|
|
- Loads the Qwen2.5-VL model and processor.
|
|
- For a given image, predicts garment attributes (e.g., type, fit, hem, neckline) in a controlled, structured format.
|
|
- Can process single images or entire datasets (DressCode, VITON-HD).
|
|
- **Key Arguments**:
|
|
- `--pretrained_model_name_or_path`: Path or HuggingFace model ID for Qwen2.5-VL.
|
|
- `--image_path`: Path to a single image (for single-image captioning).
|
|
- `--output_path`: Where to save the generated caption.
|
|
- `--image_category`: Garment category (`upper_body`, `lower_body`, `dresses`).
|
|
- For batch/dataset mode: `--dataset_name`, `--dataset_root`, `--filename`.
|
|
|
|
### 3. Clothing Segmentation (`SegCloth.py`)
|
|
|
|
- **Purpose**: Segments clothing regions in images, producing:
|
|
- A binary mask (black & white) of the garment.
|
|
- A fine mask image where the garment is grayed out.
|
|
- **How it works**:
|
|
- Uses a SegFormer model (`mattmdjaga/segformer_b2_clothes`) via HuggingFace `transformers` pipeline.
|
|
- Supports categories: `upper_body`, `dresses`, `lower_body`.
|
|
- Provides both single-image and batch processing functions.
|
|
- **Usage**:
|
|
- `segment_clothing(img, category)`: Returns `(binary_mask, fine_mask)` for a PIL image.
|
|
- `batch_segment_clothing(img_dir, out_dir)`: Processes all images in a directory.
|
|
|
|
---
|
|
|
|
## Examples
|
|
|
|
See the `examples/` directory for sample images, masks and captions. Example usage scripts are provided for each core component.
|
|
Here is the workflow of this model and a comparison of its results with other models.
|
|
**Workflow
|
|
<img src="./assets/workflow.png" alt="Workflow" />
|
|
**Compair
|
|
<img src="./assets/compair.png" alt="compair" />
|
|
---
|
|
|
|
## Citation
|
|
|
|
If you use TEMU-VTOFF in your research or product, please cite this repository and the relevant models (e.g., Stable Diffusion 3, Qwen2.5-VL, SegFormer).
|
|
|
|
```
|
|
@misc{temu-vtoff,
|
|
author = {Your Name or Organization},
|
|
title = {TEMU-VTOFF: Virtual Try-On & Fashion Understanding Toolkit},
|
|
year = {2024},
|
|
howpublished = {\url{https://github.com/yourusername/TEMU-VTOFF}}
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## License
|
|
|
|
This project is licensed under the [LICENSE](LICENSE) provided in the repository. Please check individual model and dataset licenses for additional terms.
|
|
|