See axolotl config
axolotl version: 0.5.2
adapter: lora
auto_find_batch_size: true
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 4ab73156d9f21816_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4ab73156d9f21816_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json
early_stopping: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_strategy: steps
eval_table_size: null
flash_attention: true
fp16: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: true
greater_is_better: false
group_by_length: true
hub_model_id: PhoenixB/5a009059-1c4f-4d37-9278-3826b60a39e4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
metric_for_best_model: loss
micro_batch_size: 2
mlflow_experiment_name: /tmp/4ab73156d9f21816_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
sequence_len: 8196
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2d9ccce4-8136-4915-8917-88a69776a1fe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2d9ccce4-8136-4915-8917-88a69776a1fe
warmup_steps: 20
weight_decay: 0.0
5a009059-1c4f-4d37-9278-3826b60a39e4
This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7922
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 4.2868 |
3.668 | 0.0019 | 10 | 4.0048 |
2.648 | 0.0038 | 20 | 2.2974 |
2.324 | 0.0057 | 30 | 1.9736 |
1.8779 | 0.0077 | 40 | 1.9136 |
1.6871 | 0.0096 | 50 | 1.8672 |
1.8798 | 0.0115 | 60 | 1.8412 |
1.8296 | 0.0134 | 70 | 1.8306 |
2.1119 | 0.0153 | 80 | 1.8141 |
1.7267 | 0.0172 | 90 | 1.8057 |
1.6512 | 0.0192 | 100 | 1.8047 |
1.6577 | 0.0211 | 110 | 1.7996 |
1.7361 | 0.0230 | 120 | 1.7982 |
2.2023 | 0.0249 | 130 | 1.7961 |
1.8032 | 0.0268 | 140 | 1.7953 |
1.5624 | 0.0287 | 150 | 1.7922 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support