See axolotl config
axolotl version: 0.5.2
adapter: lora
auto_find_batch_size: true
base_model: unsloth/SmolLM2-360M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- eaee6ab7fe1ea1c6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/eaee6ab7fe1ea1c6_train_data.json
type:
field_input: text
field_instruction: instruction
field_output: Resume_test
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_strategy: steps
eval_table_size: null
flash_attention: true
fp16: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: true
greater_is_better: false
group_by_length: true
hub_model_id: PhoenixB/6d50d116-df0c-4b2c-a38b-84cd30213fcd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10000
metric_for_best_model: loss
micro_batch_size: 2
mlflow_experiment_name: /tmp/eaee6ab7fe1ea1c6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
sequence_len: 8192
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9aacdce9-8545-4665-b64f-dee5a9f66890
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9aacdce9-8545-4665-b64f-dee5a9f66890
warmup_steps: 20
weight_decay: 0.0
6d50d116-df0c-4b2c-a38b-84cd30213fcd
This model is a fine-tuned version of unsloth/SmolLM2-360M on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0092
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 5608
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0005 | 1 | 0.0957 |
0.0666 | 0.0053 | 10 | 0.0951 |
0.0718 | 0.0107 | 20 | 0.0916 |
0.0955 | 0.0160 | 30 | 0.0762 |
0.0435 | 0.0214 | 40 | 0.0620 |
0.0716 | 0.0267 | 50 | 0.0516 |
0.0257 | 0.0321 | 60 | 0.0427 |
0.029 | 0.0374 | 70 | 0.0380 |
0.0439 | 0.0428 | 80 | 0.0334 |
0.0173 | 0.0481 | 90 | 0.0302 |
0.036 | 0.0535 | 100 | 0.0272 |
0.0125 | 0.0588 | 110 | 0.0244 |
0.0165 | 0.0642 | 120 | 0.0224 |
0.0889 | 0.0695 | 130 | 0.0196 |
0.008 | 0.0749 | 140 | 0.0176 |
0.0128 | 0.0802 | 150 | 0.0159 |
0.0053 | 0.0856 | 160 | 0.0144 |
0.0066 | 0.0909 | 170 | 0.0133 |
0.0164 | 0.0963 | 180 | 0.0130 |
0.0036 | 0.1016 | 190 | 0.0124 |
0.0043 | 0.1070 | 200 | 0.0121 |
0.0038 | 0.1123 | 210 | 0.0115 |
0.0034 | 0.1177 | 220 | 0.0108 |
0.0052 | 0.1230 | 230 | 0.0102 |
0.0029 | 0.1284 | 240 | 0.0104 |
0.0036 | 0.1337 | 250 | 0.0103 |
0.0025 | 0.1391 | 260 | 0.0098 |
0.0016 | 0.1444 | 270 | 0.0094 |
0.0042 | 0.1498 | 280 | 0.0093 |
0.0022 | 0.1551 | 290 | 0.0094 |
0.0023 | 0.1605 | 300 | 0.0092 |
0.0024 | 0.1658 | 310 | 0.0095 |
0.0026 | 0.1712 | 320 | 0.0096 |
0.0051 | 0.1765 | 330 | 0.0092 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support