Built with Axolotl

See axolotl config

axolotl version: 0.5.2

adapter: lora
auto_find_batch_size: true
base_model: unsloth/SmolLM2-360M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - eaee6ab7fe1ea1c6_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/eaee6ab7fe1ea1c6_train_data.json
  type:
    field_input: text
    field_instruction: instruction
    field_output: Resume_test
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_strategy: steps
eval_table_size: null
flash_attention: true
fp16: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: true
greater_is_better: false
group_by_length: true
hub_model_id: PhoenixB/6d50d116-df0c-4b2c-a38b-84cd30213fcd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10000
metric_for_best_model: loss
micro_batch_size: 2
mlflow_experiment_name: /tmp/eaee6ab7fe1ea1c6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
sequence_len: 8192
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9aacdce9-8545-4665-b64f-dee5a9f66890
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9aacdce9-8545-4665-b64f-dee5a9f66890
warmup_steps: 20
weight_decay: 0.0

6d50d116-df0c-4b2c-a38b-84cd30213fcd

This model is a fine-tuned version of unsloth/SmolLM2-360M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0092

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 5608

Training results

Training Loss Epoch Step Validation Loss
No log 0.0005 1 0.0957
0.0666 0.0053 10 0.0951
0.0718 0.0107 20 0.0916
0.0955 0.0160 30 0.0762
0.0435 0.0214 40 0.0620
0.0716 0.0267 50 0.0516
0.0257 0.0321 60 0.0427
0.029 0.0374 70 0.0380
0.0439 0.0428 80 0.0334
0.0173 0.0481 90 0.0302
0.036 0.0535 100 0.0272
0.0125 0.0588 110 0.0244
0.0165 0.0642 120 0.0224
0.0889 0.0695 130 0.0196
0.008 0.0749 140 0.0176
0.0128 0.0802 150 0.0159
0.0053 0.0856 160 0.0144
0.0066 0.0909 170 0.0133
0.0164 0.0963 180 0.0130
0.0036 0.1016 190 0.0124
0.0043 0.1070 200 0.0121
0.0038 0.1123 210 0.0115
0.0034 0.1177 220 0.0108
0.0052 0.1230 230 0.0102
0.0029 0.1284 240 0.0104
0.0036 0.1337 250 0.0103
0.0025 0.1391 260 0.0098
0.0016 0.1444 270 0.0094
0.0042 0.1498 280 0.0093
0.0022 0.1551 290 0.0094
0.0023 0.1605 300 0.0092
0.0024 0.1658 310 0.0095
0.0026 0.1712 320 0.0096
0.0051 0.1765 330 0.0092

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for PhoenixB/6d50d116-df0c-4b2c-a38b-84cd30213fcd

Adapter
(213)
this model