See axolotl config
axolotl version: 0.5.2
adapter: lora
auto_find_batch_size: true
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 039e297ae683b655_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/039e297ae683b655_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_strategy: steps
eval_table_size: null
flash_attention: true
fp16: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: PhoenixB/b4135751-e0a8-44f9-ab89-14d1a2372fa2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10000
micro_batch_size: 2
mlflow_experiment_name: /tmp/039e297ae683b655_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
sequence_len: 8196
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 744374a3-fddf-43c9-b5b6-239201c8a6f3
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 744374a3-fddf-43c9-b5b6-239201c8a6f3
warmup_steps: 20
weight_decay: 0.0
b4135751-e0a8-44f9-ab89-14d1a2372fa2
This model is a fine-tuned version of NousResearch/Nous-Hermes-2-Mistral-7B-DPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4380
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 1604
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0019 | 1 | 0.7127 |
0.588 | 0.0187 | 10 | 0.6048 |
0.5482 | 0.0374 | 20 | 0.5107 |
0.4637 | 0.0561 | 30 | 0.4935 |
0.4991 | 0.0748 | 40 | 0.4785 |
0.5014 | 0.0935 | 50 | 0.4741 |
0.452 | 0.1123 | 60 | 0.4645 |
0.475 | 0.1310 | 70 | 0.4595 |
0.4362 | 0.1497 | 80 | 0.4561 |
0.4559 | 0.1684 | 90 | 0.4512 |
0.468 | 0.1871 | 100 | 0.4463 |
0.4543 | 0.2058 | 110 | 0.4432 |
0.4628 | 0.2245 | 120 | 0.4371 |
0.4253 | 0.2432 | 130 | 0.4436 |
0.4366 | 0.2619 | 140 | 0.4373 |
0.4712 | 0.2806 | 150 | 0.4380 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PhoenixB/b4135751-e0a8-44f9-ab89-14d1a2372fa2
Base model
mistralai/Mistral-7B-v0.1