See axolotl config
axolotl version: 0.5.2
adapter: lora
auto_find_batch_size: true
base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6e97e1ea691110fa_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6e97e1ea691110fa_train_data.json
type:
field_input: input
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json
early_stopping: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_strategy: steps
eval_table_size: null
flash_attention: true
fp16: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: true
greater_is_better: false
group_by_length: true
hub_model_id: PhoenixB/f156fbde-9981-4456-a466-231e0b9741fc
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
metric_for_best_model: loss
micro_batch_size: 2
mlflow_experiment_name: /tmp/6e97e1ea691110fa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
sequence_len: 4096
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9eae47fe-908e-4dc9-a1dd-c3bb923d9601
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9eae47fe-908e-4dc9-a1dd-c3bb923d9601
warmup_steps: 20
weight_decay: 0.0
f156fbde-9981-4456-a466-231e0b9741fc
This model is a fine-tuned version of NousResearch/Nous-Hermes-2-SOLAR-10.7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8606
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0007 | 1 | 1.1339 |
1.1327 | 0.0065 | 10 | 1.0207 |
0.8201 | 0.0130 | 20 | 0.9461 |
1.1 | 0.0195 | 30 | 0.9460 |
0.9415 | 0.0260 | 40 | 0.9094 |
0.7533 | 0.0326 | 50 | 0.9169 |
1.0033 | 0.0391 | 60 | 0.8985 |
0.784 | 0.0456 | 70 | 0.8845 |
0.9953 | 0.0521 | 80 | 0.8752 |
0.871 | 0.0586 | 90 | 0.8741 |
0.6977 | 0.0651 | 100 | 0.8690 |
0.9993 | 0.0716 | 110 | 0.8648 |
0.8405 | 0.0781 | 120 | 0.8644 |
1.0287 | 0.0846 | 130 | 0.8618 |
0.9187 | 0.0911 | 140 | 0.8605 |
0.7511 | 0.0977 | 150 | 0.8606 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PhoenixB/f156fbde-9981-4456-a466-231e0b9741fc
Base model
upstage/SOLAR-10.7B-v1.0
Finetuned
NousResearch/Nous-Hermes-2-SOLAR-10.7B