Built with Axolotl

See axolotl config

axolotl version: 0.5.2

adapter: lora
auto_find_batch_size: true
base_model: EleutherAI/pythia-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 51b6f30e316baa4d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/51b6f30e316baa4d_train_data.json
  type:
    field_instruction: prompt
    field_output: chosen
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_table_size: null
flash_attention: true
fp16: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: PhoenixB/fafe2507-c35f-4499-822e-38a96e48c8f4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/51b6f30e316baa4d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 2048
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e25ed374-80f2-4135-b735-30345241b0e6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e25ed374-80f2-4135-b735-30345241b0e6
warmup_steps: 10
weight_decay: 0.0

fafe2507-c35f-4499-822e-38a96e48c8f4

This model is a fine-tuned version of EleutherAI/pythia-160m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0017 1 3.3796
3.2285 0.0171 10 3.3232
3.2074 0.0342 20 3.2459
3.1801 0.0513 30 3.2354
3.3996 0.0684 40 3.2215
3.5703 0.0855 50 3.2112
3.1746 0.1026 60 3.1977
3.1637 0.1197 70 3.1740
3.0516 0.1368 80 3.1484
3.1172 0.1539 90 3.1574
3.4377 0.1710 100 3.1491

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for PhoenixB/fafe2507-c35f-4499-822e-38a96e48c8f4

Adapter
(186)
this model