See axolotl config
axolotl version: 0.5.2
adapter: lora
auto_find_batch_size: true
base_model: EleutherAI/pythia-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 51b6f30e316baa4d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/51b6f30e316baa4d_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 10
eval_table_size: null
flash_attention: true
fp16: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: PhoenixB/fafe2507-c35f-4499-822e-38a96e48c8f4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/51b6f30e316baa4d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 2048
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e25ed374-80f2-4135-b735-30345241b0e6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e25ed374-80f2-4135-b735-30345241b0e6
warmup_steps: 10
weight_decay: 0.0
fafe2507-c35f-4499-822e-38a96e48c8f4
This model is a fine-tuned version of EleutherAI/pythia-160m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.1491
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0017 | 1 | 3.3796 |
3.2285 | 0.0171 | 10 | 3.3232 |
3.2074 | 0.0342 | 20 | 3.2459 |
3.1801 | 0.0513 | 30 | 3.2354 |
3.3996 | 0.0684 | 40 | 3.2215 |
3.5703 | 0.0855 | 50 | 3.2112 |
3.1746 | 0.1026 | 60 | 3.1977 |
3.1637 | 0.1197 | 70 | 3.1740 |
3.0516 | 0.1368 | 80 | 3.1484 |
3.1172 | 0.1539 | 90 | 3.1574 |
3.4377 | 0.1710 | 100 | 3.1491 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PhoenixB/fafe2507-c35f-4499-822e-38a96e48c8f4
Base model
EleutherAI/pythia-160m