Other Styles
Collection
illustrations
•
20 items
•
Updated
______ ______ __ __ __ ______ ______ __ __ ______ __ ______ /\ == \/\ __ \ /\ \ /\ \_\ \ /\ ___\ /\ == \ /\ \/\ \ /\___ \ /\ \ /\ __ \ \ \ _-/\ \ \/\ \\ \ \____\ \____ \\ \ \____\ \ __< \ \ \_\ \\/_/ /__ \ \ \\ \ \/\ \ \ \_\ \ \_____\\ \_____\\/\_____\\ \_____\\ \_\ \_\\ \_____\ /\_____\ \ \_\\ \_____\ \/_/ \/_____/ \/_____/ \/_____/ \/_____/ \/_/ /_/ \/_____/ \/_____/ \/_/ \/_____/
Image Processing Parameters
Parameter | Value | Parameter | Value |
---|---|---|---|
LR Scheduler | constant | Noise Offset | 0.03 |
Optimizer | AdamW | Multires Noise Discount | 0.1 |
Network Dim | 64 | Multires Noise Iterations | 10 |
Network Alpha | 32 | Repeat & Steps | 35 & 4800 |
Epoch | 20 | Save Every N Epochs | 1 |
Labeling: florence2-en(natural language & English)
Total Images Used for Training : 57 [ 11@5 ] [ Hi -Res ]
import torch
from pipelines import DiffusionPipeline
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "Polycruz9/anime-v2"
trigger_word = "Animex"
pipe.load_lora_weights(lora_repo)
device = torch.device("cuda")
pipe.to(device)
You should use Animex
to trigger the image generation.
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.