license: apache-2.0
language:
- en
pipeline_tag: text-generation
base_model:
- PowerInfer/SmallThinker-4BA0.6B-Instruct
SmallThinker-4BA0.6B-Instruct-GGUF
GGUF models with
.gguf
suffix can used with llama.cpp framwork.GGUF models with
.powerinfer.gguf
suffix are integrated with fused sparse FFN operators and sparse LM head operators. These models are only compatible to powerinfer framwork.
Introduction
🤗 Hugging Face | 🤖 ModelScope | 📑 Technical Report
SmallThinker is a family of on-device native Mixture-of-Experts (MoE) language models specially designed for local deployment, co-developed by the IPADS and School of AI at Shanghai Jiao Tong University and Zenergize AI. Designed from the ground up for resource-constrained environments, SmallThinker brings powerful, private, and low-latency AI directly to your personal devices, without relying on the cloud.
Performance
Note: The model is trained mainly on English.
Model | MMLU | GPQA-diamond | GSM8K | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average |
---|---|---|---|---|---|---|---|---|
SmallThinker-4BA0.6B-Instruct | 66.11 | 31.31 | 80.02 | 60.60 | 69.69 | 42.20 | 82.32 | 61.75 |
Qwen3-0.6B | 43.31 | 26.77 | 62.85 | 45.6 | 58.41 | 23.1 | 31.71 | 41.67 |
Qwen3-1.7B | 64.19 | 27.78 | 81.88 | 63.6 | 69.50 | 35.60 | 61.59 | 57.73 |
Gemma3nE2b-it | 63.04 | 20.2 | 82.34 | 58.6 | 73.2 | 27.90 | 64.63 | 55.70 |
Llama-3.2-3B-Instruct | 64.15 | 24.24 | 75.51 | 40 | 71.16 | 15.30 | 55.49 | 49.41 |
Llama-3.2-1B-Instruct | 45.66 | 22.73 | 1.67 | 14.4 | 48.06 | 13.50 | 37.20 | 26.17 |
For the MMLU evaluation, we use a 0-shot CoT setting.
All models are evaluated in non-thinking mode.
Speed
Model | Memory(GiB) | i9 14900 | 1+13 8gen4 | rk3588 (16G) | rk3576 | Raspberry PI 5 | RDK X5 | rk3566 |
---|---|---|---|---|---|---|---|---|
SmallThinker 4B+sparse ffn +sparse lm_head | 2.24 | 108.17 | 78.99 | 39.76 | 15.10 | 28.77 | 7.23 | 6.33 |
SmallThinker 4B+sparse ffn +sparse lm_head+limited memory | limit 1G | 29.99 | 20.91 | 15.04 | 2.60 | 0.75 | 0.67 | 0.74 |
Qwen3 0.6B | 0.6 | 148.56 | 94.91 | 45.93 | 15.29 | 27.44 | 13.32 | 9.76 |
Qwen3 1.7B | 1.3 | 62.24 | 41.00 | 20.29 | 6.09 | 11.08 | 6.35 | 4.15 |
Qwen3 1.7B+limited memory | limit 1G | 2.66 | 1.09 | 1.00 | 0.47 | - | - | 0.11 |
Gemma3n E2B | 1G, theoretically | 36.88 | 27.06 | 12.50 | 3.80 | 6.66 | 3.46 | 2.45 |
Note: i9 14900, 1+13 8ge4 use 4 threads, others use the number of threads that can achieve the maximum speed. All models here have been quantized to q4_0.
You can deploy SmallThinker with offloading support using PowerInfer
Model Card
Architecture | Mixture-of-Experts (MoE) |
---|---|
Total Parameters | 4B |
Activated Parameters | 0.6B |
Number of Layers | 32 |
Attention Hidden Dimension | 1536 |
MoE Hidden Dimension (per Expert) | 768 |
Number of Attention Heads | 12 |
Number of Experts | 32 |
Selected Experts per Token | 4 |
Vocabulary Size | 151,936 |
Context Length | 32K |
Attention Mechanism | GQA |
Activation Function | ReGLU |
How to Run
Transformers
transformers==4.53.3
is required, we are actively working to support the latest version.
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
path = "PowerInfer/SmallThinker-4BA0.6B-Instruct"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
messages = [
{"role": "user", "content": "Give me a short introduction to large language model."},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
model_outputs = model.generate(
model_inputs,
do_sample=True,
max_new_tokens=1024
)
output_token_ids = [
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
]
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)
ModelScope
ModelScope
adopts Python API similar to (though not entirely identical to) Transformers
. For basic usage, simply modify the first line of the above code as follows:
from modelscope import AutoModelForCausalLM, AutoTokenizer
Statement
- Due to the constraints of its model size and the limitations of its training data, its responses may contain factual inaccuracies, biases, or outdated information.
- Users bear full responsibility for independently evaluating and verifying the accuracy and appropriateness of all generated content.
- SmallThinker does not possess genuine comprehension or consciousness and cannot express personal opinions or value judgments.