Gemma-3-1B Event-Planner (4-bit QLoRA)
Adapter-only repo for a culturally sensitive event-planning assistant fine-tuned via LoRA on google/gemma-3-1b-it
.
This adapter (~50 MB) can be applied to the 4-bit base model at inference time, so you donβt need to ship multi-GB merged weights.
Base model: google/gemma-3-4b-it
Fine-tuned with: LoRA r=8, Ξ±=32, dropout=0.05, 4-bit NF4 quant.
Intended use
Generates culturally sensitive event plans (weddings, baby-naming, college fests β¦).
Asks clarifying questions about culture, guest count, budget, dietary needs.
Training data
- dair-ai/emotion (3 k / 0.5 k)
- ciol-research/global-festivals-wiki (9 k / 1 k)
- corbt/all-recipes (15 k / 1.5 k)
- WorkWithData/cities (6 k / 1 k)
- Yelp/yelp_review_full (12 k / 2 k)
Model Details
- Base model:
google/gemma-3-1b-it
(4 B parameters, instruction-tuned) - Quantization: 4-bit NF4 via
bitsandbytes
- LoRA config:
- rank
r = 8
- Ξ± = 32
- dropout = 0.05
- target modules =
["q_proj","v_proj"]
- rank
- Trainable params: ~0.75 M (0.07 % of base)
Fine-tuning data (β 75 k examples total)
Domain | Dataset | Train / Val | Why included |
---|---|---|---|
Emotion & Tone | dair-ai/emotion |
3 k / 0.5 k | Adapt style & follow-up questioning |
Cultural Festivals | ciol-research/global-festivals-wiki |
9 k / 1 k | Rituals, symbols, dates across cultures |
Cuisine & Menus | corbt/all-recipes |
15 k / 1.5 k | Authentic recipes for menu planning |
Venue / Geodata | WorkWithData/cities |
6 k / 1 k | Real cities + coords for location tips |
Vendors & Services | Yelp/yelp_review_full |
12 k / 2 k | Business vocabulary & recommendation tone |
Local Usage
# Install runtime dependencies:
pip install accelerate==1.7.0 bitsandbytes==0.45.5 peft==0.15.2 sentencepiece==0.2.0 torch==2.7.0 transformers==4.51.3 trl==0.17.0
# Load the 4-bit base + adapter:
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig,
pipeline,
)
from peft import PeftModel
# 1. Quant config
bnb_cfg = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_quant_type = "nf4",
bnb_4bit_use_double_quant = True,
bnb_4bit_compute_dtype = torch.float16,
)
# 2. Tokenizer
BASE = "google/gemma-3-1b-it"
tokenizer = AutoTokenizer.from_pretrained(
BASE,
trust_remote_code=True,
use_auth_token=True,
)
# 3. Base model
base = AutoModelForCausalLM.from_pretrained(
BASE,
quantization_config=bnb_cfg,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
use_auth_token=True,
)
# 4. LoRA adapter
ADAPTER = "PranavKeshav/event-planner-gemma-4bit"
model = PeftModel.from_pretrained(
base,
ADAPTER,
device_map="auto",
torch_dtype=torch.float16,
use_auth_token=True,
)
model.eval()
# 5. Pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
max_new_tokens=150,
temperature=0.7,
top_p=0.9,
)
# 6. Test
print(pipe("Plan a Gujarati wedding for 120 guests in Ahmedabad.")[0]["generated_text"])
Model Card & Citation
- Intended use: Generate culturally sensitive event plans; ask clarifying questions about dates, budgets, dietary needs.
- Limitations: May hallucinate or miss rare cultural details; verify all critical recommendations.
- License: Same as google/gemma-3-1b-it (Apache-2.0) + dataset licenses; see individual datasets.
- Citation:
@misc{gemma_event_planner_2025, title = {Gemma-3-4B Event-Planner LoRA Adapter}, author = {Keshav, Pranav}, year = {2025}, howpublished = {\url{https://huggingface.co/YOUR_USERNAME/event-planner-gemma-4bit}} }
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support