TabPFN v2: A Tabular Foundation Model

TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular datasets without requiring task-specific training.

Installation

pip install tabpfn

Model Details

πŸ“š Citation

@article{hollmann2025tabpfn,
 title={Accurate predictions on small data with a tabular foundation model},
 author={Hollmann, Noah and M{\"u}ller, Samuel and Purucker, Lennart and
         Krishnakumar, Arjun and K{\"o}rfer, Max and Hoo, Shi Bin and
         Schirrmeister, Robin Tibor and Hutter, Frank},
 journal={Nature},
 year={2025},
 month={01},
 day={09},
 doi={10.1038/s41586-024-08328-6},
 publisher={Springer Nature},
 url={https://www.nature.com/articles/s41586-024-08328-6},
}

Quick Start

πŸ“š For detailed usage examples and best practices, check out:

Technical Requirements

  • Python β‰₯ 3.9
  • PyTorch β‰₯ 2.1
  • scikit-learn β‰₯ 1.0
  • Hardware: 16GB+ RAM, CPU (GPU optional)

Resources

Team

  • Noah Hollmann
  • Samuel MΓΌller
  • Lennart Purucker
  • Arjun Krishnakumar
  • Max KΓΆrfer
  • Shi Bin Hoo
  • Robin Tibor Schirrmeister
  • Frank Hutter
  • Eddie Bergman
Downloads last month
4,950
Inference Examples
Inference API (serverless) does not yet support tabpfn models for this pipeline type.