|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: base_sami_22k_cont_pt_ftpseudo_wr15 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# base_sami_22k_cont_pt_ftpseudo_wr15 |
|
|
|
This model was trained from scratch on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 279.1175 |
|
- Wer: 0.5077 |
|
- Cer: 0.1722 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.15 |
|
- num_epochs: 60.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 2898.1974 | 1.0 | 3628 | 315.9604 | 0.6330 | 0.1893 | |
|
| 757.7022 | 2.0 | 7256 | 279.5220 | 0.5065 | 0.1721 | |
|
| 662.3705 | 3.0 | 10884 | 301.2926 | 0.5251 | 0.1764 | |
|
| 647.4321 | 4.0 | 14512 | 309.8589 | 0.5494 | 0.2027 | |
|
| 659.7851 | 5.0 | 18140 | 309.3199 | 0.5862 | 0.2070 | |
|
| 692.9787 | 6.0 | 21768 | 373.3183 | 0.6487 | 0.2412 | |
|
| 739.3389 | 7.0 | 25396 | 379.1962 | 0.6765 | 0.2556 | |
|
| 786.0181 | 8.0 | 29024 | 414.1455 | 0.7022 | 0.2729 | |
|
| 827.0145 | 9.0 | 32652 | 441.2162 | 0.7871 | 0.3400 | |
|
| 849.8929 | 10.0 | 36280 | 422.3855 | 0.7259 | 0.2963 | |
|
| 830.547 | 11.0 | 39908 | 426.6281 | 0.7506 | 0.3046 | |
|
| 803.7191 | 12.0 | 43536 | 418.4753 | 0.7314 | 0.2984 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.3 |
|
- Pytorch 2.5.1 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|