|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: base_sami_22k_cont_pt_ftpseudo_wr20 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# base_sami_22k_cont_pt_ftpseudo_wr20 |
|
|
|
This model was trained from scratch on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 271.5626 |
|
- Wer: 0.4858 |
|
- Cer: 0.1540 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.2 |
|
- num_epochs: 60.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 2875.4683 | 1.0 | 3628 | 287.1173 | 0.5699 | 0.1733 | |
|
| 758.2716 | 2.0 | 7256 | 272.0594 | 0.4882 | 0.1551 | |
|
| 644.8381 | 3.0 | 10884 | 290.3244 | 0.5062 | 0.1729 | |
|
| 609.5405 | 4.0 | 14512 | 257.9622 | 0.5174 | 0.1867 | |
|
| 606.3339 | 5.0 | 18140 | 296.2997 | 0.5668 | 0.2280 | |
|
| 619.5554 | 6.0 | 21768 | 324.2591 | 0.5901 | 0.2188 | |
|
| 646.4168 | 7.0 | 25396 | 341.2834 | 0.5953 | 0.2440 | |
|
| 667.3437 | 8.0 | 29024 | 361.0744 | 0.6283 | 0.2255 | |
|
| 693.7482 | 9.0 | 32652 | 364.4579 | 0.6597 | 0.2685 | |
|
| 733.3208 | 10.0 | 36280 | 409.5368 | 0.7001 | 0.2802 | |
|
| 780.5633 | 11.0 | 39908 | 410.3908 | 0.7154 | 0.2849 | |
|
| 813.6104 | 12.0 | 43536 | 419.5198 | 0.7614 | 0.3089 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.3 |
|
- Pytorch 2.5.1 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|