base_sami_22k_ftpseudo

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 272.0352
  • Wer: 0.4500
  • Cer: 0.1412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.25
  • num_epochs: 60.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3988.287 1.0 1080 303.8312 0.5742 0.1722
674.1274 2.0 2160 270.2952 0.4506 0.1415
517.9397 3.0 3240 339.8132 0.4931 0.1630
478.4345 4.0 4320 292.6837 0.4896 0.1691
476.3436 5.0 5400 331.5307 0.5095 0.1799
507.3865 6.0 6480 359.2405 0.5620 0.2006
511.676 7.0 7560 406.4503 0.5881 0.2164
546.8947 8.0 8640 367.2822 0.5835 0.2145
578.7039 9.0 9720 441.9370 0.6559 0.2586
610.5788 10.0 10800 454.6888 0.6856 0.2609
658.402 11.0 11880 472.7102 0.7457 0.3024
692.8005 12.0 12960 474.2548 0.6993 0.2891
726.6378 13.0 14040 476.5723 0.7154 0.2942
775.3879 14.0 15120 469.1171 0.7360 0.2998
803.9686 15.0 16200 503.4136 0.7707 0.3031
818.0579 16.0 17280 544.9781 0.7587 0.3132
808.2149 17.0 18360 493.0830 0.7396 0.3015
767.5317 18.0 19440 527.8341 0.7296 0.3046
739.8194 19.0 20520 500.3179 0.7558 0.3085
716.691 20.0 21600 545.5074 0.7235 0.2984
682.661 21.0 22680 516.1239 0.7511 0.2900
657.0491 22.0 23760 549.7004 0.6968 0.2776
629.1355 23.0 24840 500.3793 0.6974 0.2808
607.2812 24.0 25920 528.1496 0.6959 0.2700
595.4605 25.0 27000 495.3539 0.7015 0.2834
555.9978 26.0 28080 500.2841 0.7071 0.2782
544.9409 27.0 29160 476.8067 0.7075 0.2840
517.4491 28.0 30240 513.6489 0.6824 0.2703
502.3091 29.0 31320 450.8210 0.6880 0.2624
477.324 30.0 32400 469.6162 0.6562 0.2616
461.2854 31.0 33480 480.2810 0.6640 0.2484
452.682 32.0 34560 477.9762 0.6638 0.2652
424.353 33.0 35640 444.6511 0.6533 0.2520
417.6179 34.0 36720 412.5329 0.6504 0.2526
389.705 35.0 37800 485.3770 0.6744 0.2633
375.7767 36.0 38880 467.3829 0.6474 0.2664
361.8829 37.0 39960 469.9674 0.6312 0.2517
352.311 38.0 41040 457.0285 0.6495 0.2545
340.1846 39.0 42120 463.1925 0.6345 0.2462
323.3272 40.0 43200 421.0725 0.6171 0.2394
312.6201 41.0 44280 443.3647 0.6201 0.2384
301.6251 42.0 45360 429.3776 0.6105 0.2350
284.7902 43.0 46440 466.1553 0.6021 0.2321
279.8459 44.0 47520 487.2148 0.6162 0.2319
260.5616 45.0 48600 445.4757 0.6023 0.2306
254.3347 46.0 49680 439.6965 0.6054 0.2392
244.043 47.0 50760 459.5868 0.5885 0.2317
227.4755 48.0 51840 492.8037 0.6002 0.2308
216.7 49.0 52920 452.6693 0.5934 0.2283
211.8976 50.0 54000 482.3886 0.5947 0.2288
202.0287 51.0 55080 475.8258 0.6053 0.2353
186.2731 52.0 56160 465.3925 0.5908 0.2311
187.1888 53.0 57240 459.6522 0.5890 0.2247
179.0453 54.0 58320 473.7304 0.5789 0.2243
165.2614 55.0 59400 453.9692 0.5788 0.2238
160.4416 56.0 60480 474.8051 0.5732 0.2212
153.8781 57.0 61560 478.4581 0.5729 0.2202
151.1706 58.0 62640 467.0158 0.5688 0.2196
147.0876 59.0 63720 474.2252 0.5603 0.2160
143.0797 60.0 64800 469.5599 0.5641 0.2168

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
94.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support