File size: 11,883 Bytes
9bd6d06 c75a43d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
wandb: wandb version 0.17.7 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.17.6
wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240822_150154-1kodfy70
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run eval_pd2000_s300_shuff100_hindi
wandb: ⭐️ View project at https://wandb.ai/priyanshipal/huggingface
wandb: 🚀 View run at https://wandb.ai/priyanshipal/huggingface/runs/1kodfy70
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
self.scaler = torch.cuda.amp.GradScaler(**kwargs)
max_steps is given, it will override any value given in num_train_epochs
Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
149: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
150: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}
CHECK MODEL PARAMS Wav2Vec2ForCTC(
(wav2vec2): Wav2Vec2Model(
(feature_extractor): Wav2Vec2FeatureEncoder(
(conv_layers): ModuleList(
(0): Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
)
)
(feature_projection): Wav2Vec2FeatureProjection(
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(projection): Linear(in_features=512, out_features=1024, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
)
(encoder): Wav2Vec2EncoderStableLayerNorm(
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
(conv): ParametrizedConv1d(
1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _WeightNorm()
)
)
)
(padding): Wav2Vec2SamePadLayer()
(activation): GELUActivation()
)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.0, inplace=False)
(layers): ModuleList(
(0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
(attention): Wav2Vec2SdpaAttention(
(k_proj): Linear(in_features=1024, out_features=1024, bias=True)
(v_proj): Linear(in_features=1024, out_features=1024, bias=True)
(q_proj): Linear(in_features=1024, out_features=1024, bias=True)
(out_proj): Linear(in_features=1024, out_features=1024, bias=True)
)
(dropout): Dropout(p=0.0, inplace=False)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(feed_forward): Wav2Vec2FeedForward(
(intermediate_dropout): Dropout(p=0.0, inplace=False)
(intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
(output_dense): Linear(in_features=4096, out_features=1024, bias=True)
(output_dropout): Dropout(p=0.0, inplace=False)
)
(final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(dropout): Dropout(p=0.0, inplace=False)
(lm_head): Linear(in_features=1024, out_features=151, bias=True)
)
08/22/2024 15:02:06 - INFO - __main__ - *** Evaluate ***
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
0%| | 0/36 [00:00<?, ?it/s]
6%|▌ | 2/36 [00:01<00:26, 1.27it/s]
8%|▊ | 3/36 [00:02<00:33, 1.02s/it]
11%|█ | 4/36 [00:04<00:41, 1.30s/it]
14%|█▍ | 5/36 [00:06<00:43, 1.40s/it]
17%|█▋ | 6/36 [00:07<00:41, 1.39s/it]
19%|█▉ | 7/36 [00:08<00:35, 1.22s/it]
22%|██▏ | 8/36 [00:09<00:27, 1.01it/s]
25%|██▌ | 9/36 [00:09<00:23, 1.17it/s]
28%|██▊ | 10/36 [00:10<00:21, 1.22it/s]
31%|███ | 11/36 [00:11<00:20, 1.20it/s]
33%|███▎ | 12/36 [00:11<00:19, 1.21it/s]
36%|███▌ | 13/36 [00:12<00:18, 1.23it/s]
39%|███▉ | 14/36 [00:13<00:15, 1.43it/s]
42%|████▏ | 15/36 [00:13<00:12, 1.63it/s]
44%|████▍ | 16/36 [00:14<00:11, 1.79it/s]
47%|████▋ | 17/36 [00:14<00:10, 1.89it/s]
50%|█████ | 18/36 [00:15<00:10, 1.79it/s]
53%|█████▎ | 19/36 [00:15<00:09, 1.74it/s]
56%|█████▌ | 20/36 [00:16<00:08, 1.79it/s]
58%|█████▊ | 21/36 [00:16<00:07, 1.94it/s]
61%|██████ | 22/36 [00:17<00:07, 1.94it/s]
64%|██████▍ | 23/36 [00:17<00:06, 1.91it/s]
67%|██████▋ | 24/36 [00:18<00:06, 1.88it/s]
69%|██████▉ | 25/36 [00:18<00:06, 1.81it/s]
72%|███████▏ | 26/36 [00:19<00:05, 1.84it/s]
75%|███████▌ | 27/36 [00:19<00:04, 1.94it/s]
78%|███████▊ | 28/36 [00:20<00:05, 1.59it/s]
81%|████████ | 29/36 [00:22<00:06, 1.08it/s]
83%|████████▎ | 30/36 [00:23<00:06, 1.08s/it]
86%|████████▌ | 31/36 [00:25<00:06, 1.35s/it]
89%|████████▉ | 32/36 [00:26<00:04, 1.13s/it]
92%|█████████▏| 33/36 [00:27<00:02, 1.03it/s]
94%|█████████▍| 34/36 [00:27<00:01, 1.20it/s]
97%|█████████▋| 35/36 [00:28<00:00, 1.35it/s]
100%|██████████| 36/36 [00:28<00:00, 1.65it/s]
100%|██████████| 36/36 [00:30<00:00, 1.20it/s]
Printing predictions for a few samples:
Sample 1:
Reference: हम उनका उपयोग ऐसे ही कर सकते हैं या आवश्यकता अनुसार कुछ बदलाव करके उपयोग कर सकते हैं
######
Prediction:
Sample 2:
Reference: अतः शीर्षक इस तरह से जोड़ सकते हैं
######
Prediction:
Sample 3:
Reference: प्रेसेंटेशन के अंत में आपने स्लाइड की एक कॉपी बना ली है
######
Prediction:
Sample 4:
Reference: चलिए अब फोंट्स और फोंट्स को फॉर्मेट करने के कुछ तरीके देखते हैं
######
Prediction:
Sample 5:
Reference: यह एक डायलॉग बॉक्स खोलेगा जिसमें हम अपनी आवश्यकतानुसार फॉन्ट स्टाइल और साइज़ सेट कर सकते हैं
######
Prediction:
last Reference string यह स्क्रिप्ट लता द्वारा अनुवादित है आईआईटी मुंबई की ओर से मैं रवि कुमार अब आपसे विदा लेता हूँहमसे जुड़ने के लिए धन्यवाद
last prediction string
***** eval metrics *****
eval_cer = 1.0
eval_loss = nan
eval_model_preparation_time = 0.0046
eval_runtime = 0:00:39.88
eval_samples = 572
eval_samples_per_second = 14.34
eval_steps_per_second = 0.902
eval_wer = 1.0
training_args.bin: 0%| | 0.00/5.43k [00:00<?, ?B/s]
training_args.bin: 100%|██████████| 5.43k/5.43k [00:00<00:00, 28.4kB/s]
wandb: - 0.005 MB of 0.005 MB uploaded
wandb: \ 0.036 MB of 0.036 MB uploaded
wandb:
wandb: Run history:
wandb: eval/cer ▁
wandb: eval/model_preparation_time ▁
wandb: eval/runtime ▁
wandb: eval/samples_per_second ▁
wandb: eval/steps_per_second ▁
wandb: eval/wer ▁
wandb: eval_cer ▁
wandb: eval_model_preparation_time ▁
wandb: eval_runtime ▁
wandb: eval_samples ▁
wandb: eval_samples_per_second ▁
wandb: eval_steps_per_second ▁
wandb: eval_wer ▁
wandb: train/global_step ▁▁
wandb:
wandb: Run summary:
wandb: eval/cer 1.0
wandb: eval/loss nan
wandb: eval/model_preparation_time 0.0046
wandb: eval/runtime 39.8895
wandb: eval/samples_per_second 14.34
wandb: eval/steps_per_second 0.902
wandb: eval/wer 1.0
wandb: eval_cer 1.0
wandb: eval_loss nan
wandb: eval_model_preparation_time 0.0046
wandb: eval_runtime 39.8895
wandb: eval_samples 572
wandb: eval_samples_per_second 14.34
wandb: eval_steps_per_second 0.902
wandb: eval_wer 1.0
wandb: train/global_step 0
wandb:
wandb: 🚀 View run eval_pd2000_s300_shuff100_hindi at: https://wandb.ai/priyanshipal/huggingface/runs/1kodfy70
wandb: ⭐️ View project at: https://wandb.ai/priyanshipal/huggingface
wandb: Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20240822_150154-1kodfy70/logs
wandb: WARNING The new W&B backend becomes opt-out in version 0.18.0; try it out with `wandb.require("core")`! See https://wandb.me/wandb-core for more information.
|