s300_shuff100 / evalonlyhindi_indicwav2vec_MUCS_warmup500_s300shuff100_2142336.out
Priyanship's picture
End of training
9bd6d06 verified
wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
wandb: wandb version 0.17.7 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.17.6
wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240822_145052-jw39kyll
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run eval_pd2000_s300_shuff100_hindi
wandb: ⭐️ View project at https://wandb.ai/priyanshipal/huggingface
wandb: 🚀 View run at https://wandb.ai/priyanshipal/huggingface/runs/jw39kyll
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
warnings.warn(
Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 572 examples [00:00, 1536.67 examples/s] Generating train split: 572 examples [00:00, 1460.76 examples/s]
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/configuration_utils.py:364: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
149: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
150: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}
CHECK MODEL PARAMS Wav2Vec2ForCTC(
(wav2vec2): Wav2Vec2Model(
(feature_extractor): Wav2Vec2FeatureEncoder(
(conv_layers): ModuleList(
(0): Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
)
)
(feature_projection): Wav2Vec2FeatureProjection(
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(projection): Linear(in_features=512, out_features=1024, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
)
(encoder): Wav2Vec2EncoderStableLayerNorm(
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
(conv): ParametrizedConv1d(
1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _WeightNorm()
)
)
)
(padding): Wav2Vec2SamePadLayer()
(activation): GELUActivation()
)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.0, inplace=False)
(layers): ModuleList(
(0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
(attention): Wav2Vec2SdpaAttention(
(k_proj): Linear(in_features=1024, out_features=1024, bias=True)
(v_proj): Linear(in_features=1024, out_features=1024, bias=True)
(q_proj): Linear(in_features=1024, out_features=1024, bias=True)
(out_proj): Linear(in_features=1024, out_features=1024, bias=True)
)
(dropout): Dropout(p=0.0, inplace=False)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(feed_forward): Wav2Vec2FeedForward(
(intermediate_dropout): Dropout(p=0.0, inplace=False)
(intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
(output_dense): Linear(in_features=4096, out_features=1024, bias=True)
(output_dropout): Dropout(p=0.0, inplace=False)
)
(final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(dropout): Dropout(p=0.0, inplace=False)
(lm_head): Linear(in_features=1024, out_features=151, bias=True)
)
preprocess datasets: 0%| | 0/572 [00:00<?, ? examples/s] preprocess datasets: 0%| | 1/572 [00:05<55:39, 5.85s/ examples] preprocess datasets: 2%|▏ | 10/572 [00:05<04:03, 2.31 examples/s] preprocess datasets: 3%|▎ | 18/572 [00:06<01:54, 4.83 examples/s] preprocess datasets: 4%|▍ | 25/572 [00:06<01:11, 7.65 examples/s] preprocess datasets: 6%|▌ | 34/572 [00:06<00:43, 12.27 examples/s] preprocess datasets: 8%|▊ | 43/572 [00:06<00:29, 17.91 examples/s] preprocess datasets: 9%|▊ | 50/572 [00:06<00:23, 22.51 examples/s] preprocess datasets: 10%|█ | 60/572 [00:06<00:17, 29.51 examples/s] preprocess datasets: 12%|█▏ | 67/572 [00:06<00:14, 34.02 examples/s] preprocess datasets: 13%|█▎ | 74/572 [00:06<00:12, 39.27 examples/s] preprocess datasets: 15%|█▍ | 84/572 [00:07<00:11, 43.57 examples/s] preprocess datasets: 16%|█▌ | 92/572 [00:07<00:10, 46.59 examples/s] preprocess datasets: 18%|█▊ | 104/572 [00:07<00:08, 58.16 examples/s] preprocess datasets: 20%|█▉ | 114/572 [00:07<00:07, 64.61 examples/s] preprocess datasets: 22%|██▏ | 126/572 [00:07<00:05, 74.45 examples/s] preprocess datasets: 25%|██▌ | 144/572 [00:07<00:04, 98.88 examples/s] preprocess datasets: 28%|██▊ | 159/572 [00:07<00:04, 97.80 examples/s] preprocess datasets: 30%|███ | 174/572 [00:08<00:03, 106.33 examples/s] preprocess datasets: 33%|███▎ | 188/572 [00:08<00:03, 98.01 examples/s] preprocess datasets: 35%|███▌ | 203/572 [00:08<00:03, 97.05 examples/s] preprocess datasets: 37%|███▋ | 214/572 [00:08<00:03, 97.14 examples/s] preprocess datasets: 40%|████ | 231/572 [00:08<00:03, 111.06 examples/s] preprocess datasets: 43%|████▎ | 246/572 [00:08<00:02, 119.38 examples/s] preprocess datasets: 46%|████▌ | 262/572 [00:08<00:02, 128.50 examples/s] preprocess datasets: 49%|████▉ | 282/572 [00:08<00:02, 127.17 examples/s] preprocess datasets: 52%|█████▏ | 299/572 [00:09<00:02, 118.30 examples/s] preprocess datasets: 55%|█████▍ | 314/572 [00:09<00:02, 108.79 examples/s] preprocess datasets: 57%|█████▋ | 326/572 [00:09<00:02, 108.63 examples/s] preprocess datasets: 59%|█████▉ | 338/572 [00:09<00:02, 109.62 examples/s] preprocess datasets: 62%|██████▏ | 353/572 [00:09<00:01, 116.64 examples/s] preprocess datasets: 64%|██████▍ | 368/572 [00:09<00:01, 120.91 examples/s] preprocess datasets: 67%|██████▋ | 385/572 [00:09<00:01, 125.42 examples/s] preprocess datasets: 70%|███████ | 403/572 [00:10<00:01, 118.61 examples/s] preprocess datasets: 74%|███████▎ | 421/572 [00:10<00:01, 112.82 examples/s] preprocess datasets: 76%|███████▌ | 436/572 [00:10<00:01, 118.26 examples/s] preprocess datasets: 79%|███████▉ | 453/572 [00:10<00:00, 128.77 examples/s] preprocess datasets: 82%|████████▏ | 468/572 [00:10<00:01, 96.66 examples/s] preprocess datasets: 84%|████████▍ | 481/572 [00:10<00:01, 79.29 examples/s] preprocess datasets: 87%|████████▋ | 497/572 [00:11<00:00, 83.74 examples/s] preprocess datasets: 89%|████████▉ | 509/572 [00:11<00:00, 85.20 examples/s] preprocess datasets: 91%|█████████▏| 522/572 [00:11<00:00, 90.09 examples/s] preprocess datasets: 94%|█████████▎| 535/572 [00:11<00:00, 95.84 examples/s] preprocess datasets: 96%|█████████▌| 549/572 [00:11<00:00, 92.40 examples/s] preprocess datasets: 98%|█████████▊| 559/572 [00:11<00:00, 91.95 examples/s] preprocess datasets: 100%|█████████▉| 571/572 [00:11<00:00, 88.74 examples/s] preprocess datasets: 100%|██████████| 572/572 [00:12<00:00, 45.64 examples/s]
/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
self.scaler = torch.cuda.amp.GradScaler(**kwargs)
max_steps is given, it will override any value given in num_train_epochs
08/22/2024 14:51:18 - INFO - __main__ - *** Evaluate ***
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
0%| | 0/36 [00:00<?, ?it/s] 6%|▌ | 2/36 [00:01<00:27, 1.23it/s] 8%|▊ | 3/36 [00:02<00:34, 1.04s/it] 11%|█ | 4/36 [00:04<00:42, 1.33s/it] 14%|█▍ | 5/36 [00:06<00:44, 1.42s/it] 17%|█▋ | 6/36 [00:07<00:42, 1.41s/it] 19%|█▉ | 7/36 [00:08<00:35, 1.24s/it] 22%|██▏ | 8/36 [00:09<00:27, 1.01it/s] 25%|██▌ | 9/36 [00:09<00:22, 1.18it/s] 28%|██▊ | 10/36 [00:10<00:21, 1.23it/s] 31%|███ | 11/36 [00:11<00:20, 1.19it/s] 33%|███▎ | 12/36 [00:12<00:19, 1.21it/s] 36%|███▌ | 13/36 [00:12<00:18, 1.27it/s] 39%|███▉ | 14/36 [00:13<00:15, 1.46it/s] 42%|████▏ | 15/36 [00:13<00:12, 1.65it/s] 44%|████▍ | 16/36 [00:14<00:11, 1.81it/s] 47%|████▋ | 17/36 [00:14<00:09, 1.91it/s] 50%|█████ | 18/36 [00:15<00:09, 1.85it/s] 53%|█████▎ | 19/36 [00:15<00:09, 1.75it/s] 56%|█████▌ | 20/36 [00:16<00:08, 1.81it/s] 58%|█████▊ | 21/36 [00:16<00:07, 1.95it/s] 61%|██████ | 22/36 [00:17<00:07, 1.96it/s] 64%|██████▍ | 23/36 [00:17<00:06, 1.92it/s] 67%|██████▋ | 24/36 [00:18<00:06, 1.92it/s] 69%|██████▉ | 25/36 [00:18<00:06, 1.81it/s] 72%|███████▏ | 26/36 [00:19<00:05, 1.84it/s] 75%|███████▌ | 27/36 [00:19<00:04, 1.94it/s] 78%|███████▊ | 28/36 [00:20<00:05, 1.59it/s] 81%|████████ | 29/36 [00:22<00:06, 1.06it/s] 83%|████████▎ | 30/36 [00:23<00:06, 1.11s/it] 86%|████████▌ | 31/36 [00:25<00:06, 1.38s/it] 89%|████████▉ | 32/36 [00:26<00:04, 1.15s/it] 92%|█████████▏| 33/36 [00:27<00:02, 1.02it/s] 94%|█████████▍| 34/36 [00:27<00:01, 1.18it/s] 97%|█████████▋| 35/36 [00:28<00:00, 1.34it/s] 100%|██████████| 36/36 [00:28<00:00, 1.65it/s] 100%|██████████| 36/36 [00:30<00:00, 1.20it/s]
Printing predictions for a few samples:
Sample 1:
Reference: हम उनका उपयोग ऐसे ही कर सकते हैं या आवश्यकता अनुसार कुछ बदलाव करके उपयोग कर सकते हैं
######
Prediction:
Sample 2:
Reference: अतः शीर्षक इस तरह से जोड़ सकते हैं
######
Prediction:
Sample 3:
Reference: प्रेसेंटेशन के अंत में आपने स्लाइड की एक कॉपी बना ली है
######
Prediction:
Sample 4:
Reference: चलिए अब फोंट्स और फोंट्स को फॉर्मेट करने के कुछ तरीके देखते हैं
######
Prediction:
Sample 5:
Reference: यह एक डायलॉग बॉक्स खोलेगा जिसमें हम अपनी आवश्यकतानुसार फॉन्ट स्टाइल और साइज़ सेट कर सकते हैं
######
Prediction:
last Reference string यह स्क्रिप्ट लता द्वारा अनुवादित है आईआईटी मुंबई की ओर से मैं रवि कुमार अब आपसे विदा लेता हूँहमसे जुड़ने के लिए धन्यवाद
last prediction string
***** eval metrics *****
eval_cer = 1.0
eval_loss = nan
eval_model_preparation_time = 0.0044
eval_runtime = 0:00:40.62
eval_samples = 572
eval_samples_per_second = 14.081
eval_steps_per_second = 0.886
eval_wer = 1.0
json-train.arrow: 0%| | 0.00/161k [00:00<?, ?B/s]
Upload 3 LFS files: 0%| | 0/3 [00:00<?, ?it/s]
model.safetensors: 0%| | 0.00/1.26G [00:00<?, ?B/s]
training_args.bin: 0%| | 0.00/5.43k [00:00<?, ?B/s]
model.safetensors: 0%| | 918k/1.26G [00:00<02:29, 8.42MB/s]
model.safetensors: 0%| | 1.77M/1.26G [00:00<04:36, 4.55MB/s]
model.safetensors: 0%| | 3.93M/1.26G [00:00<02:09, 9.73MB/s] training_args.bin: 100%|██████████| 5.43k/5.43k [00:00<00:00, 10.7kB/s]
json-train.arrow: 100%|██████████| 161k/161k [00:00<00:00, 304kB/s]
model.safetensors: 0%| | 5.47M/1.26G [00:00<02:13, 9.40MB/s]
Upload 3 LFS files: 33%|███▎ | 1/3 [00:00<00:01, 1.32it/s]
model.safetensors: 1%| | 7.14M/1.26G [00:00<02:13, 9.44MB/s]
model.safetensors: 1%| | 9.32M/1.26G [00:00<01:50, 11.3MB/s]
model.safetensors: 1%| | 12.0M/1.26G [00:01<01:26, 14.5MB/s]
model.safetensors: 1%|▏ | 16.0M/1.26G [00:01<02:02, 10.2MB/s]
model.safetensors: 2%|▏ | 20.6M/1.26G [00:01<01:21, 15.2MB/s]
model.safetensors: 2%|▏ | 22.8M/1.26G [00:01<01:17, 16.0MB/s]
model.safetensors: 2%|▏ | 25.9M/1.26G [00:02<01:16, 16.2MB/s]
model.safetensors: 2%|▏ | 28.0M/1.26G [00:02<01:20, 15.4MB/s]
model.safetensors: 2%|▏ | 29.8M/1.26G [00:02<01:17, 15.9MB/s]
model.safetensors: 3%|▎ | 32.0M/1.26G [00:02<02:28, 8.29MB/s]
model.safetensors: 3%|▎ | 36.2M/1.26G [00:02<01:40, 12.2MB/s]
model.safetensors: 3%|▎ | 39.7M/1.26G [00:03<01:26, 14.1MB/s]
model.safetensors: 3%|▎ | 43.7M/1.26G [00:03<02:06, 9.63MB/s]
model.safetensors: 4%|▎ | 45.3M/1.26G [00:03<01:58, 10.3MB/s]
model.safetensors: 4%|▍ | 48.0M/1.26G [00:04<02:35, 7.81MB/s]
model.safetensors: 5%|▍ | 62.3M/1.26G [00:04<00:54, 22.1MB/s]
model.safetensors: 5%|▌ | 67.3M/1.26G [00:04<01:00, 19.7MB/s]
model.safetensors: 6%|▌ | 74.7M/1.26G [00:05<00:45, 26.4MB/s]
model.safetensors: 6%|▋ | 80.0M/1.26G [00:05<00:53, 22.2MB/s]
model.safetensors: 7%|▋ | 84.2M/1.26G [00:05<01:03, 18.6MB/s]
model.safetensors: 7%|▋ | 87.3M/1.26G [00:06<01:39, 11.8MB/s]
model.safetensors: 7%|▋ | 90.0M/1.26G [00:06<01:29, 13.1MB/s]
model.safetensors: 8%|▊ | 96.0M/1.26G [00:06<01:31, 12.8MB/s]
model.safetensors: 9%|▊ | 110M/1.26G [00:07<00:45, 25.2MB/s] 
model.safetensors: 9%|▉ | 115M/1.26G [00:07<00:51, 22.5MB/s]
model.safetensors: 10%|▉ | 126M/1.26G [00:07<00:33, 33.8MB/s]
model.safetensors: 10%|█ | 132M/1.26G [00:07<00:38, 29.7MB/s]
model.safetensors: 11%|█▏ | 144M/1.26G [00:07<00:26, 41.9MB/s]
model.safetensors: 12%|█▏ | 150M/1.26G [00:08<00:36, 30.8MB/s]
model.safetensors: 13%|█▎ | 160M/1.26G [00:08<00:36, 30.6MB/s]
model.safetensors: 14%|█▍ | 175M/1.26G [00:08<00:23, 46.3MB/s]
model.safetensors: 14%|█▍ | 183M/1.26G [00:09<00:40, 26.9MB/s]
model.safetensors: 15%|█▍ | 188M/1.26G [00:10<00:57, 18.8MB/s]
model.safetensors: 15%|█▌ | 192M/1.26G [00:10<01:15, 14.2MB/s]
model.safetensors: 16%|█▋ | 207M/1.26G [00:10<00:42, 24.7MB/s]
model.safetensors: 17%|█▋ | 214M/1.26G [00:11<00:42, 24.4MB/s]
model.safetensors: 18%|█▊ | 224M/1.26G [00:11<00:38, 27.1MB/s]
model.safetensors: 19%|█▉ | 239M/1.26G [00:11<00:24, 41.1MB/s]
model.safetensors: 20%|█▉ | 247M/1.26G [00:11<00:28, 35.3MB/s]
model.safetensors: 20%|██ | 256M/1.26G [00:12<00:31, 32.2MB/s]
model.safetensors: 21%|██▏ | 271M/1.26G [00:12<00:21, 46.9MB/s]
model.safetensors: 22%|██▏ | 279M/1.26G [00:12<00:28, 34.7MB/s]
model.safetensors: 23%|██▎ | 288M/1.26G [00:12<00:31, 31.0MB/s]
model.safetensors: 24%|██▍ | 303M/1.26G [00:13<00:21, 45.1MB/s]
model.safetensors: 25%|██▍ | 311M/1.26G [00:13<00:23, 40.8MB/s]
model.safetensors: 25%|██▌ | 320M/1.26G [00:13<00:27, 34.4MB/s]
model.safetensors: 27%|██▋ | 336M/1.26G [00:13<00:18, 49.4MB/s]
model.safetensors: 27%|██▋ | 343M/1.26G [00:14<00:22, 40.7MB/s]
model.safetensors: 28%|██▊ | 352M/1.26G [00:14<00:28, 31.6MB/s]
model.safetensors: 29%|██▉ | 367M/1.26G [00:14<00:19, 45.7MB/s]
model.safetensors: 30%|██▉ | 375M/1.26G [00:14<00:22, 39.3MB/s]
model.safetensors: 30%|███ | 384M/1.26G [00:15<00:26, 33.7MB/s]
model.safetensors: 32%|███▏ | 399M/1.26G [00:15<00:17, 48.2MB/s]
model.safetensors: 32%|███▏ | 407M/1.26G [00:15<00:26, 32.8MB/s]
model.safetensors: 33%|███▎ | 416M/1.26G [00:16<00:26, 32.1MB/s]
model.safetensors: 34%|███▍ | 431M/1.26G [00:16<00:17, 46.2MB/s]
model.safetensors: 35%|███▍ | 439M/1.26G [00:16<00:20, 40.1MB/s]
model.safetensors: 35%|███▌ | 448M/1.26G [00:17<00:24, 33.9MB/s]
model.safetensors: 37%|███▋ | 462M/1.26G [00:17<00:16, 47.5MB/s]
model.safetensors: 37%|███▋ | 470M/1.26G [00:17<00:20, 39.1MB/s]
model.safetensors: 38%|███▊ | 480M/1.26G [00:17<00:20, 37.4MB/s]
model.safetensors: 39%|███▉ | 495M/1.26G [00:17<00:14, 52.3MB/s]
model.safetensors: 40%|███▉ | 503M/1.26G [00:18<00:18, 40.4MB/s]
model.safetensors: 40%|████ | 509M/1.26G [00:18<00:18, 41.1MB/s]
model.safetensors: 41%|████ | 515M/1.26G [00:18<00:22, 32.6MB/s]
model.safetensors: 41%|████ | 521M/1.26G [00:18<00:22, 33.7MB/s]
model.safetensors: 42%|████▏ | 528M/1.26G [00:19<00:26, 27.6MB/s]
model.safetensors: 43%|████▎ | 540M/1.26G [00:19<00:19, 36.7MB/s]
model.safetensors: 43%|████▎ | 545M/1.26G [00:19<00:25, 27.8MB/s]
model.safetensors: 44%|████▍ | 554M/1.26G [00:19<00:19, 36.2MB/s]
model.safetensors: 44%|████▍ | 560M/1.26G [00:20<00:25, 27.4MB/s]
model.safetensors: 45%|████▌ | 569M/1.26G [00:20<00:19, 35.3MB/s]
model.safetensors: 45%|████▌ | 574M/1.26G [00:20<00:18, 38.0MB/s]
model.safetensors: 46%|████▌ | 579M/1.26G [00:20<00:21, 31.6MB/s]
model.safetensors: 47%|████▋ | 591M/1.26G [00:20<00:14, 46.7MB/s]
model.safetensors: 47%|████▋ | 598M/1.26G [00:21<00:18, 36.1MB/s]
model.safetensors: 48%|████▊ | 608M/1.26G [00:21<00:25, 25.2MB/s]
model.safetensors: 49%|████▉ | 622M/1.26G [00:21<00:16, 37.8MB/s]
model.safetensors: 50%|████▉ | 629M/1.26G [00:22<00:19, 32.0MB/s]
model.safetensors: 51%|█████ | 640M/1.26G [00:22<00:19, 32.0MB/s]
model.safetensors: 52%|█████▏ | 655M/1.26G [00:22<00:13, 46.6MB/s]
model.safetensors: 53%|█████▎ | 663M/1.26G [00:23<00:19, 30.6MB/s]
model.safetensors: 53%|█████▎ | 672M/1.26G [00:23<00:20, 29.4MB/s]
model.safetensors: 54%|█████▍ | 687M/1.26G [00:23<00:13, 43.0MB/s]
model.safetensors: 55%|█████▌ | 695M/1.26G [00:23<00:17, 33.2MB/s]
model.safetensors: 56%|█████▌ | 704M/1.26G [00:24<00:20, 27.7MB/s]
model.safetensors: 57%|█████▋ | 719M/1.26G [00:24<00:13, 40.5MB/s]
model.safetensors: 58%|█████▊ | 727M/1.26G [00:24<00:15, 35.1MB/s]
model.safetensors: 58%|█████▊ | 736M/1.26G [00:25<00:16, 31.8MB/s]
model.safetensors: 60%|█████▉ | 751M/1.26G [00:25<00:11, 45.8MB/s]
model.safetensors: 60%|██████ | 759M/1.26G [00:25<00:12, 41.2MB/s]
model.safetensors: 61%|██████ | 768M/1.26G [00:25<00:13, 35.5MB/s]
model.safetensors: 62%|██████▏ | 783M/1.26G [00:26<00:09, 50.5MB/s]
model.safetensors: 63%|██████▎ | 791M/1.26G [00:26<00:12, 36.9MB/s]
model.safetensors: 63%|██████▎ | 800M/1.26G [00:26<00:14, 32.2MB/s]
model.safetensors: 64%|██████▍ | 814M/1.26G [00:26<00:09, 45.0MB/s]
model.safetensors: 65%|██████▌ | 822M/1.26G [00:27<00:11, 37.1MB/s]
model.safetensors: 66%|██████▌ | 832M/1.26G [00:27<00:12, 33.4MB/s]
model.safetensors: 67%|██████▋ | 848M/1.26G [00:27<00:08, 47.8MB/s]
model.safetensors: 68%|██████▊ | 855M/1.26G [00:28<00:10, 39.9MB/s]
model.safetensors: 68%|██████▊ | 864M/1.26G [00:28<00:11, 33.4MB/s]
model.safetensors: 70%|██████▉ | 879M/1.26G [00:28<00:07, 47.9MB/s]
model.safetensors: 70%|███████ | 887M/1.26G [00:28<00:10, 35.7MB/s]
model.safetensors: 71%|███████ | 896M/1.26G [00:29<00:11, 33.0MB/s]
model.safetensors: 72%|███████▏ | 911M/1.26G [00:29<00:07, 47.5MB/s]
model.safetensors: 73%|███████▎ | 919M/1.26G [00:29<00:09, 37.9MB/s]
model.safetensors: 74%|███████▎ | 928M/1.26G [00:30<00:10, 33.3MB/s]
model.safetensors: 75%|███████▍ | 943M/1.26G [00:30<00:06, 47.8MB/s]
model.safetensors: 75%|███████▌ | 951M/1.26G [00:30<00:08, 35.1MB/s]
model.safetensors: 76%|███████▌ | 960M/1.26G [00:31<00:09, 31.4MB/s]
model.safetensors: 77%|███████▋ | 975M/1.26G [00:31<00:06, 45.5MB/s]
model.safetensors: 78%|███████▊ | 983M/1.26G [00:31<00:06, 40.1MB/s]
model.safetensors: 79%|███████▊ | 992M/1.26G [00:31<00:05, 46.2MB/s]
model.safetensors: 79%|███████▉ | 998M/1.26G [00:31<00:08, 32.3MB/s]
model.safetensors: 80%|███████▉ | 1.00G/1.26G [00:32<00:07, 34.4MB/s]
model.safetensors: 80%|███████▉ | 1.01G/1.26G [00:32<00:10, 24.8MB/s]
model.safetensors: 80%|████████ | 1.01G/1.26G [00:32<00:08, 28.0MB/s]
model.safetensors: 81%|████████ | 1.02G/1.26G [00:32<00:08, 30.3MB/s]
model.safetensors: 81%|████████ | 1.02G/1.26G [00:32<00:07, 30.7MB/s]
model.safetensors: 81%|████████▏ | 1.03G/1.26G [00:33<00:10, 22.7MB/s]
model.safetensors: 82%|████████▏ | 1.03G/1.26G [00:33<00:08, 25.7MB/s]
model.safetensors: 82%|████████▏ | 1.04G/1.26G [00:33<00:07, 31.2MB/s]
model.safetensors: 82%|████████▏ | 1.04G/1.26G [00:33<00:09, 22.9MB/s]
model.safetensors: 83%|████████▎ | 1.05G/1.26G [00:33<00:07, 28.7MB/s]
model.safetensors: 84%|████████▎ | 1.06G/1.26G [00:34<00:07, 27.6MB/s]
model.safetensors: 85%|████████▍ | 1.07G/1.26G [00:34<00:04, 46.4MB/s]
model.safetensors: 85%|████████▌ | 1.08G/1.26G [00:34<00:04, 37.0MB/s]
model.safetensors: 86%|████████▌ | 1.09G/1.26G [00:34<00:05, 32.8MB/s]
model.safetensors: 87%|████████▋ | 1.10G/1.26G [00:34<00:03, 48.8MB/s]
model.safetensors: 88%|████████▊ | 1.11G/1.26G [00:35<00:04, 37.8MB/s]
model.safetensors: 89%|████████▊ | 1.12G/1.26G [00:35<00:04, 32.2MB/s]
model.safetensors: 90%|████████▉ | 1.13G/1.26G [00:35<00:02, 45.2MB/s]
model.safetensors: 90%|█████████ | 1.14G/1.26G [00:36<00:03, 38.3MB/s]
model.safetensors: 91%|█████████▏| 1.15G/1.26G [00:36<00:02, 37.2MB/s]
model.safetensors: 92%|█████████▏| 1.17G/1.26G [00:36<00:01, 52.4MB/s]
model.safetensors: 93%|█████████▎| 1.18G/1.26G [00:36<00:02, 40.8MB/s]
model.safetensors: 94%|█████████▍| 1.18G/1.26G [00:37<00:02, 32.8MB/s]
model.safetensors: 95%|█████████▌| 1.20G/1.26G [00:37<00:01, 47.1MB/s]
model.safetensors: 96%|█████████▌| 1.21G/1.26G [00:37<00:01, 39.0MB/s]
model.safetensors: 96%|█████████▋| 1.22G/1.26G [00:38<00:01, 32.3MB/s]
model.safetensors: 98%|█████████▊| 1.23G/1.26G [00:38<00:00, 46.9MB/s]
model.safetensors: 98%|█████████▊| 1.24G/1.26G [00:38<00:00, 41.9MB/s]
model.safetensors: 99%|█████████▉| 1.25G/1.26G [00:38<00:00, 35.7MB/s] model.safetensors: 100%|██████████| 1.26G/1.26G [00:39<00:00, 32.2MB/s]
Upload 3 LFS files: 67%|██████▋ | 2/3 [00:39<00:23, 23.09s/it] Upload 3 LFS files: 100%|██████████| 3/3 [00:39<00:00, 13.16s/it]
wandb: - 0.007 MB of 0.007 MB uploaded wandb: \ 0.039 MB of 0.039 MB uploaded wandb:
wandb: Run history:
wandb: eval/cer ▁
wandb: eval/model_preparation_time ▁
wandb: eval/runtime
wandb: eval/samples_per_second ▁
wandb: eval/steps_per_second ▁
wandb: eval/wer ▁
wandb: eval_cer ▁
wandb: eval_model_preparation_time ▁
wandb: eval_runtime ▁
wandb: eval_samples ▁
wandb: eval_samples_per_second ▁
wandb: eval_steps_per_second ▁
wandb: eval_wer ▁
wandb: train/global_step ▁▁
wandb:
wandb: Run summary:
wandb: eval/cer 1.0
wandb: eval/loss nan
wandb: eval/model_preparation_time 0.0044
wandb: eval/runtime 40.6214
wandb: eval/samples_per_second 14.081
wandb: eval/steps_per_second 0.886
wandb: eval/wer 1.0
wandb: eval_cer 1.0
wandb: eval_loss nan
wandb: eval_model_preparation_time 0.0044
wandb: eval_runtime 40.6214
wandb: eval_samples 572
wandb: eval_samples_per_second 14.081
wandb: eval_steps_per_second 0.886
wandb: eval_wer 1.0
wandb: train/global_step 0
wandb:
wandb: 🚀 View run eval_pd2000_s300_shuff100_hindi at: https://wandb.ai/priyanshipal/huggingface/runs/jw39kyll
wandb: ⭐️ View project at: https://wandb.ai/priyanshipal/huggingface
wandb: Synced 6 W&B file(s), 0 media file(s), 1 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20240822_145052-jw39kyll/logs
wandb: WARNING The new W&B backend becomes opt-out in version 0.18.0; try it out with `wandb.require("core")`! See https://wandb.me/wandb-core for more information.